题目内容

10.球O的半径为1,该球的一小圆O1上两点A、B的球面距离为$\frac{π}{3}$,OO1=$\frac{\sqrt{2}}{2}$,则∠AO1B=(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.π

分析 由题意知应先求出AB的长度,在直角三角形AOB中由余弦定理可得AB=1,由此知三角形AO1B的三边长,由此可以求出∠AO1B的值.

解答 解:由题设知OO1=$\frac{\sqrt{2}}{2}$,OA=OB=1,
在圆O1中有O1A=O1B=$\frac{\sqrt{2}}{2}$,
又A,B两点间的球面距离为$\frac{π}{3}$,
由余弦定理,得:AB=1,
在三角形AO1B中由勾股定理可得:∠AO1B=$\frac{π}{2}$,
故选:B.

点评 本题的考点是球面距离及相关计算,其考查背景是球内一小圆上两点的球面距,对空间想象能力要求较高,此类题是一个基本题型,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网