题目内容
设集合M={(x,y)|x∈R,y∈R},定义映射f:N*→M满足:对任意n∈N*都有f(n)=(xn,yn),f(n+1)=(-
xn+
a,yn+
),且f(1)=(
a,1),其中常数a>0.
(Ⅰ)求yn的表达式;
(Ⅱ)判断xn与a的大小.
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 4n2-1 |
| 3 |
| 2 |
(Ⅰ)求yn的表达式;
(Ⅱ)判断xn与a的大小.
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由题意得yn+1-yn=
=
(
-
),利用裂项法求和即可;
(Ⅱ)由题意得xn+1-a=-
(xn-a),{xn-a}是首项为
a,公比为-
的等比数列,xn-a=
a•(-
)n-1,讨论n即可得出结论.
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
(Ⅱ)由题意得xn+1-a=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:(Ⅰ)由题意得
y1=1,yn+1=yn+
∴yn+1-yn=
=
(
-
),
∴yn=y1+(y2-y1)+…+(yn-yn-1)=1+
(1-
+
-
+…+
-
)=1+
(1-
)=
.
(Ⅱ)由题意得xn+1=-
xn+
a,∴xn+1-a=-
(xn-a),
∵x1=
a,∴x1-a=
a,
∴{xn-a}是首项为
a,公比为-
的等比数列,
∴xn-a=
a•(-
)n-1,
∵a>0,∴当为奇数时,xn-a>0,xn>a,
当n为偶数时,xn-a<0,xn<a.
y1=1,yn+1=yn+
| 1 |
| 4n2-1 |
∴yn+1-yn=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴yn=y1+(y2-y1)+…+(yn-yn-1)=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-3 |
| 1 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 3n-2 |
| 2n-1 |
(Ⅱ)由题意得xn+1=-
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
∵x1=
| 3 |
| 2 |
| 1 |
| 2 |
∴{xn-a}是首项为
| 1 |
| 2 |
| 1 |
| 2 |
∴xn-a=
| 1 |
| 2 |
| 1 |
| 2 |
∵a>0,∴当为奇数时,xn-a>0,xn>a,
当n为偶数时,xn-a<0,xn<a.
点评:本题主要考查数列的递推关系及等比数列的定义性质,考查裂项相消法求数列的和等知识,属于中档题.
练习册系列答案
相关题目
y=sin(ωx+ϕ)(ω>0,|ϕ|<
)的图象的一部分图形如图所示,则函数的解析式为( )

| π |
| 2 |
A、y=sin(x+
| ||
B、y=sin(x-
| ||
C、y=sin(2x+
| ||
D、y=sin(2x-
|