题目内容
已知数列{an}(n∈N+)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(an)}为等差数列,则称函数f(x)为“保比差数列函数”,现有定义在(0,+∞)上的五个数列:
①f(x)=
;②f(x)=ex;③f(x)=
;④y=kx(k>0);⑤y=ax2+b(a>0且b>0),
则为“保比差数列函数”的是 .
①f(x)=
| 1 |
| x |
| x |
则为“保比差数列函数”的是
考点:等差数列与等比数列的综合
专题:综合题,等差数列与等比数列
分析:充分运用等比数列的定义,lnf(an)-lnf(an-1)=ln
=d.
=ed=常数,
判断{
=ed}为等比数列,
再分别运用代数运算论证判断,紧扣给定的定义.
| f(an) |
| f(an-1) |
| f(an) |
| f(an-1) |
判断{
| f(an) |
| f(an-1) |
再分别运用代数运算论证判断,紧扣给定的定义.
解答:
解:设数列的公比q,若lnf(an)-lnf(an-1)=ln
=d.
=ed=常数,
∴{
=ed}为等比数列.
①若f(x)=
,则f(an)=
,所以.
=
=
,是等比数列,①为“保比差数列函数”;
②f(x)=ex,.
=e an-an-1不是常数,②不为“保比差数列函数”;
③f(x)=
,.
=
=
=常数,∴{
=ed}为等比数列,③为“保比差数列函数”;
④y=kx(k>0);.
=
=q=常数,∴{
=ed}为等比数列.,④为“保比差数列函数”;
⑤y=ax2+b(a>0且b>0),.
=
≠常数,∴{
=ed}为等比数列,⑤不为“保比差数列函数”;
故答案为:①③④
| f(an) |
| f(an-1) |
| f(an) |
| f(an-1) |
∴{
| f(an) |
| f(an-1) |
①若f(x)=
| 1 |
| x |
| 1 |
| an |
| f(an) |
| f(an-1) |
| an-1 |
| an |
| 1 |
| q |
②f(x)=ex,.
| f(an) |
| f(an-1) |
③f(x)=
| x |
| f(an) |
| f(an-1) |
| ( ) |
| ( ) |
|
| q |
| f(an) |
| f(an-1) |
④y=kx(k>0);.
| f(an) |
| f(an-1) |
| an |
| an-1 |
| f(an) |
| f(an-1) |
⑤y=ax2+b(a>0且b>0),.
| f(an) |
| f(an-1) |
| a(an)2+b |
| a(an-1)2+b |
| f(an) |
| f(an-1) |
故答案为:①③④
点评:本题很新颖,融合了阅读分析能力,考查了对等比数列的定义,对数等知识的运用,综合性较强.
练习册系列答案
相关题目