题目内容

已知数列{an}(n∈N+)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(an)}为等差数列,则称函数f(x)为“保比差数列函数”,现有定义在(0,+∞)上的五个数列:
①f(x)=
1
x
;②f(x)=ex;③f(x)=
x
;④y=kx(k>0);⑤y=ax2+b(a>0且b>0),
则为“保比差数列函数”的是
 
考点:等差数列与等比数列的综合
专题:综合题,等差数列与等比数列
分析:充分运用等比数列的定义,lnf(an)-lnf(an-1)=ln
f(an)
f(an-1)
=d.
f(an)
f(an-1)
=ed=常数,
判断{
f(an)
f(an-1)
=ed}为等比数列,
再分别运用代数运算论证判断,紧扣给定的定义.
解答: 解:设数列的公比q,若lnf(an)-lnf(an-1)=ln
f(an)
f(an-1)
=d.
f(an)
f(an-1)
=ed=常数,
∴{
f(an)
f(an-1)
=ed}为等比数列.

①若f(x)=
1
x
,则f(an)=
1
an
,所以.
f(an)
f(an-1)
=
an-1
an
=
1
q
,是等比数列,①为“保比差数列函数”;
②f(x)=ex,.
f(an)
f(an-1)
=e an-an-1不是常数,②不为“保比差数列函数”;
③f(x)=
x
,.
f(an)
f(an-1)
=
(    )
(    )
an
an-1
=
q
=常数,∴{
f(an)
f(an-1)
=ed}为等比数列,③为“保比差数列函数”;
④y=kx(k>0);.
f(an)
f(an-1)
=
an
an-1
=q=常数,∴{
f(an)
f(an-1)
=ed}为等比数列.,④为“保比差数列函数”;
⑤y=ax2+b(a>0且b>0),.
f(an)
f(an-1)
=
a(an)2+b
a(an-1)2+b
≠常数,∴{
f(an)
f(an-1)
=ed}为等比数列,⑤不为“保比差数列函数”;
故答案为:①③④
点评:本题很新颖,融合了阅读分析能力,考查了对等比数列的定义,对数等知识的运用,综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网