题目内容

16.已知△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow m=(cosB,2{cos^2}\frac{C}{2}-1)$,$\overrightarrow n=(c,b-2a)$且$\overrightarrow m•\overrightarrow n=0$.
(1)求角C的大小;
(2)若△ABC的面积为$2\sqrt{3}$,a+b=6,求c.

分析 (1)由已知利用平面向量数量积,三角函数恒等变换的应用化简可得sinA=2sinAcosC,由sinA≠0,可求$cosC=\frac{1}{2}$,结合范围C∈(0,π),可求C的值.
(2)利用三角形面积公式可求ab=8,进而利用余弦定理可求c的值.

解答 解:(1)∵由已知可得:$\overrightarrow m=(cosB,cosC)$,$\overrightarrow n=(c,b-2a)$,$\overrightarrow m•\overrightarrow n=0$,
∴ccosB+(b-2a)cosC=0,
∴sinCcosB+(sinB-2sinA)cosC=0,即sinA=2sinAcosC,
又∵sinA≠0,
∴$cosC=\frac{1}{2}$,
又∵C∈(0,π),
∴$C=\frac{π}{3}$.
(2)∵${S_{△ABC}}=\frac{1}{2}absinC=2\sqrt{3}$,
∴ab=8,
又c2=a2+b2-2abcosC,即(a+b)2-3ab=c2
∴c2=12,
故$c=2\sqrt{3}$.

点评 本题主要考查了平面向量数量积,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网