题目内容
5.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A、B,则|AB|等于( )| A. | $\frac{\sqrt{89}}{5}$ | B. | $\frac{17}{5}$ | C. | $\frac{13}{5}$ | D. | $\frac{11}{5}$ |
分析 直线3ax-y-2=0经过定点A(0,-2).(2a-1)x+5ay-1=0,化为:a(2x+5y)-x-1=0,令$\left\{\begin{array}{l}{2x+5y=0}\\{-x-1=0}\end{array}\right.$,解得B.利用两点之间的距离公式即可得出.
解答 解:直线3ax-y-2=0经过定点A(0,-2).
(2a-1)x+5ay-1=0,化为:a(2x+5y)-x-1=0,令$\left\{\begin{array}{l}{2x+5y=0}\\{-x-1=0}\end{array}\right.$,解得x=-1,y=$\frac{2}{5}$,即直线(2a-1)x+5ay-1=0过定点B$(-1,\frac{2}{5})$.
则|AB|=$\sqrt{{1}^{2}+(-2-\frac{2}{5})^{2}}$=$\frac{13}{5}$.
故选:C.
点评 本题考查了直线系的应用、两点之间的距离,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
17.直线x+$\sqrt{3}$y-1=0的倾斜角为( )
| A. | 60° | B. | 120° | C. | 135° | D. | 150° |
6.不等式|x-1|+|x-3|<4的解集是( )
| A. | (1,3) | B. | (0,4) | C. | (3,4) | D. | (1,4) |