题目内容

如图,正方体ABCD-A1B1C1D1的棱长为2.
(1)求异面直线BC1与B1D1所成的角;
(2)求三棱锥A1-AB1D1的体积.
考点:棱柱、棱锥、棱台的体积,异面直线及其所成的角
专题:空间位置关系与距离
分析:(1)连结BD,DC1,由BD∥B1D1,得∠DBC1是异面直线BC1与B1D1所成的角,由此能求出异面直线BC1与B1D1所成的角.
(2)由VA1-AB1D1=VA-A1B1D1,利用等积法能求出三棱锥A1-AB1D1的体积.
解答: 解:(1)连结BD,DC1
∵BD∥B1D1,∴∠DBC1是异面直线BC1与B1D1所成的角,
∵BD=BC1=DC1
∴∠DBC1=60°,
∴异面直线BC1与B1D1所成的角为60°.
(2)∵AA1⊥平面A1B1D1,且AA1=2,
SA1B1D2=
1
2
×2×2
=2,
VA1-AB1D1=VA-A1B1D1
=
1
3
×SA1B1D1×AA1
=
1
3
×2×2
=
4
3
点评:本题考查异面直线所成角的大小的求法,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网