题目内容
设数列{an}的通项公式为an=n2+kn(n∈N+),若数列{an}是单调递增数列,求实数k的取值范围.
考点:数列的函数特性
专题:等差数列与等比数列
分析:数列{an}是单调递增数列,化简an+1>an(n∈N+)恒成立.通过分离参数即可得出.
解答:
解:∵数列{an}是单调递增数列,
∴an+1>an(n∈N+)恒成立.
又an=n2+kn(n∈N+),
∴(n+1)2+k(n+1)-(n2+kn)>0恒成立,
即2n+1+k>0,
∴k>-(2n+1)(n∈N+)恒成立.
当n=1时,-(2n+1)的最大值为-3,
∴k>-3即为所求范围.
∴an+1>an(n∈N+)恒成立.
又an=n2+kn(n∈N+),
∴(n+1)2+k(n+1)-(n2+kn)>0恒成立,
即2n+1+k>0,
∴k>-(2n+1)(n∈N+)恒成立.
当n=1时,-(2n+1)的最大值为-3,
∴k>-3即为所求范围.
点评:本题考查了单调递增数列、分离参数法,考查了推理能力,属于基础题.
练习册系列答案
相关题目
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是偶函数”是“φ=2kπ+
”的( )
| π |
| 2 |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分又不必要条件 |