题目内容
14.已知i是虚数单位,则复数$\frac{1-i}{1+i}$在复平面上所对应的点的坐标是(0,-1).分析 利用复数代数形式的乘除运算化简,求出z的坐标得答案.
解答 解:∵$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}=\frac{-2i}{2}=-i$,
∴复数$\frac{1-i}{1+i}$在复平面上所对应的点的坐标是(0,-1).
故答案为:(0,-1).
点评 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础的计算题.
练习册系列答案
相关题目
2.已知3sin2α=cosα,则sinα可以是( )
| A. | -$\frac{1}{6}$ | B. | $\frac{1}{6}$ | C. | $\frac{\sqrt{35}}{6}$ | D. | $\frac{1}{3}$ |
9.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是互相垂直的两个单位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,则( )
| A. | $\overrightarrow{a}$∥$\overrightarrow{b}$ | B. | $\overrightarrow{a}$⊥$\overrightarrow{b}$ | C. | |$\overrightarrow{a}$|=2|$\overrightarrow{b}$|| | D. | <$\overrightarrow{a}$,$\overrightarrow{b}$>=60° |
19.某服装销售公司进行关于消费档次的调查,根据每人月均服装消费额将消费档次分为0-500元;500-1000元;1000-1500元;1500-2000元四个档次,针对A,B两类人群各抽取100人的样本进行统计分析,各档次人数统计结果如下表所示:
月均服装消费额不超过1000元的人群视为中低消费人群,超过1000元的视为中高收入人群.
(Ⅰ)从A类样本中任选一人,求此人属于中低消费人群的概率;
(Ⅱ)从A,B两类人群中各任选一人,分别记为甲、乙,估计甲的消费档次不低于乙的消费档次的概率;
(Ⅲ)以各消费档次的区间中点对应的数值为该档次的人均消费额,估计A,B两类人群哪类月均服装消费额的方差较大(直接写出结果,不必说明理由).
| 档次 人群 | 0~ 500元 | 500~ 1000元 | 1000~ 1500元 | 1500~ 2000元 |
| A类 | 20 | 50 | 20 | 10 |
| B类 | 50 | 30 | 10 | 10 |
(Ⅰ)从A类样本中任选一人,求此人属于中低消费人群的概率;
(Ⅱ)从A,B两类人群中各任选一人,分别记为甲、乙,估计甲的消费档次不低于乙的消费档次的概率;
(Ⅲ)以各消费档次的区间中点对应的数值为该档次的人均消费额,估计A,B两类人群哪类月均服装消费额的方差较大(直接写出结果,不必说明理由).
6.已知命题p:对任意x∈R,总有2x>x2;q:“ab>4”是“a>2,b>2”的充分不必要条件,则下列命题为真命题的是( )
| A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
3.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(4,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)等于( )
| A. | 5 | B. | 10 | C. | -$\frac{5}{4}$ | D. | -5 |
4.在△ABC中,$A=\frac{π}{3},AB=2$,其面积等于$\frac{{\sqrt{3}}}{2}$,则BC等于( )
| A. | $\sqrt{3}$ | B. | $\sqrt{7}$ | C. | 3 | D. | 7 |