题目内容

11.已知函数$f(x)=cos(\sqrt{3}x+ϕ)$,若y=f(x)+f'(x)是偶函数,则ϕ=-$\frac{π}{3}$+kπ,k∈Z.

分析 求函数的导数,利用辅助角公式将函数进行化简,利用三角函数的图象和性质即可得到结论.

解答 解:∵f(x)=cos($\sqrt{3}$x+ϕ)
∴f′(x)=-$\sqrt{3}$sin($\sqrt{3}$x+ϕ),
则f(x)+f′(x)=cos($\sqrt{3}$x+ϕ)-$\sqrt{3}$sin($\sqrt{3}$x+ϕ)=2cos($\sqrt{3}$x+ϕ+$\frac{π}{3}$),
若f(x)+f′(x)是偶函数,
则ϕ+$\frac{π}{3}$=kπ,k∈Z,
即ϕ=-$\frac{π}{3}$+kπ,k∈Z,
故答案为-$\frac{π}{3}$+kπ,k∈Z.

点评 本题主要考查三角函数的图象和性质,利用导数公式,结合辅助角公式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网