题目内容
4.命题“x>0,总有(x+1)ex>1”的否定是( )| A. | “x>0,使得(x+1)ex>1” | B. | “x>0,总有(x+1)ex≥1” | ||
| C. | “x>0,使得(x+1)ex≤1” | D. | x>0,总有(x+1)ex<1” |
分析 直接利用全称命题的否定是特称命题写出结果即可.
解答 解:因为全称命题的否定是特称命题,
所以命题“x>0,总有(x+1)ex>1”的否定是:x>0,使得(x+1)ex≤1.
故选:C
点评 本题考查命题的否定,特称命题与全称命题的否定关系.
练习册系列答案
相关题目
15.
如图,A,B,C三个开关控制着1,2,3,4号四盏灯.若开关A控制着2,3,4号灯(即按一下开关A,2,3,4号灯亮,再按一下开关A,2,3,4号灯熄灭),同样,开关B控制着1,3,4号灯,开关C控制着1,2,4号灯.开始时,四盏灯都亮着,那么下列说法正确的是( )
| A. | 只需要按开关A,C可以将四盏灯全部熄灭 | |
| B. | 只需要按开关B,C可以将四盏灯全部熄灭 | |
| C. | 按开关A,B,C可以将四盏灯全部熄灭 | |
| D. | 按开关A,B,C无法将四盏灯全部熄灭 |
9.某个命题和正整数n有关,如果当n=k,k为正整数时命题成立,那么可推得当n=k+1时,命题也成立.现已知当n=7时命题不成立,那么可以推得( )
| A. | 当n=6时该命题不成立 | B. | 当n=6时该命题成立 | ||
| C. | 当n=8时该命题不成立 | D. | 当n=8时该命题成立 |
16.已知点P(x,y)的坐标满足x2+y2-2y=0,则$u=\frac{y+1}{x}$的取值范围是( )
| A. | $-\sqrt{3}≤u≤\sqrt{3}$ | B. | $u≥\sqrt{3}$或$u≤-\sqrt{3}$ | C. | $-\frac{{\sqrt{3}}}{3}≤u≤\frac{{\sqrt{3}}}{3}$ | D. | $u≥\frac{{\sqrt{3}}}{3}$或$u≤-\frac{{\sqrt{3}}}{3}$ |
13.某商品的销售量y(件)与销售价格x(元/件)存在线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为$\widehat{y}$=-10x+200,则下列结论正确的是( )
| A. | y与x成正线性相关关系 | |
| B. | 当商品销售价格提高1元时,商品的销售量减少200件 | |
| C. | 当销售价格为10元/件时,销售量为100件 | |
| D. | 当销售价格为10元/件时,销售量为100件左右 |