题目内容
18.已知正项等比数列{an}的第四项,第五项,第六项分别为1,m,9,则双曲线$C:\frac{y^2}{6}-\frac{x^2}{m}=1$的离心率为$\frac{\sqrt{6}}{2}$.分析 由正项等比数列{an}的第四项,第五项,第六项分别为1,m,9,求出m,由此入手能求出离心率.
解答 解:∵正项等比数列{an}的第四项,第五项,第六项分别为1,m,9,
∴m=3.
∴双曲线$C:\frac{y^2}{6}-\frac{x^2}{m}=1$的离心率为$\frac{3}{\sqrt{6}}$=$\frac{\sqrt{6}}{2}$.
故答案为:$\frac{\sqrt{6}}{2}$.
点评 本题考查圆锥曲线的离心率的求法,解题时要注意等比数列的性质的合理运用.
练习册系列答案
相关题目
8.记复数z的共轭复数为$\overline{z}$,若$\overline{z}$(1-i)=2i(i为虚数单位),则复数z的模|z|=( )
| A. | $\sqrt{2}$ | B. | 1 | C. | 2$\sqrt{2}$ | D. | 2 |
9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,若在双曲线上存在点P使△OPF2是以O为顶点的等腰三角形,又|PF1|+|PF2|=2$\sqrt{2{c}^{2}-{b}^{2}}$,其中c为双曲线的半焦距,则双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{2}$+1 | C. | $\sqrt{3}$ | D. | $\sqrt{3}$-1 |
6.已知△ABC的三个顶点的坐标为A(0,1),B(1,0),C(0,-2),O为坐标原点,动点M满足|$\overrightarrow{CM}$|=1,则|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OM}$|的最大值是( )
| A. | $\sqrt{2}+1$ | B. | $\sqrt{7}+1$ | C. | $\sqrt{2}$-1 | D. | $\sqrt{7}$-1 |
13.已知$a=\frac{1}{π}\int_{-1}^1{(\sqrt{1-{x^2}}+sinx)dx}$,则二项式${(2x-\frac{a}{x^2})^9}$的展开式中的常数项为-672.
3.若复数z满足z-1=$\frac{(i-1)^{2}+2}{1+i}$(i为虚数单位),则z在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
7.
某大学高等数学老师这学期分别用A、B两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图如图:
(1)学校规定:成绩不得低于85分的为优秀,请填写如表的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.
(1)学校规定:成绩不得低于85分的为优秀,请填写如表的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
| 甲班 | 乙班 | 合计 | |
| 优秀 | |||
| 不优秀 | |||
| 合计 |
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.