题目内容
3.若复数z满足z-1=$\frac{(i-1)^{2}+2}{1+i}$(i为虚数单位),则z在复平面内对应的点位于( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数的运算法则、几何意义即可得出.
解答 解:z-1=$\frac{(i-1)^{2}+2}{1+i}$=$\frac{-2i+2}{1+i}$=$\frac{2(1-i)^{2}}{(1+i)(1-i)}$=-2i,
∴z=1-2i,
则z在复平面内对应的点(1,-2)位于第四象限.
故选:D.
点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
13.李冶(1192-1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( )
| A. | 10步、50步 | B. | 20步、60步 | C. | 30步、70步 | D. | 40步、80步 |
14.在复平面中,复数$\frac{1}{(1+i)^{2}+1}$+i4对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
11.已知正项等差数列{an}中,a1+a2+a3=15,若a1+2,a2+5,a3+13成等比数列,则a10=( )
| A. | 21 | B. | 22 | C. | 23 | D. | 24 |
8.已知实数x、y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-a≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=$\frac{y+1}{x+1}$的最小值为-$\frac{1}{4}$,则正数a的值为( )
| A. | $\frac{7}{6}$ | B. | 1 | C. | $\frac{3}{4}$ | D. | $\frac{8}{9}$ |
13.下列函数中,既是偶函数又存在零点的是( )
| A. | y=x2+1 | B. | y=|lgx| | C. | y=cosx | D. | y=ex-1 |