题目内容
某类产品按质量可分10个档次,生产最低档次(第1档次为最低档次,第10档次为最高档次),每件利润为8元,如果产品每提高一个档次,则利润增加2元.用同样的工时,最低档次产品每天可生产60件,提高一个档次将减少3件产品,则生产第 档次的产品,所获利润最大.
考点:二次函数的性质
专题:函数的性质及应用
分析:设生产第x档次的产品,求出利润y关于x的函数解析式,结合二次函数的图象和性质,可得答案.
解答:
解:设生产第x档次的产品,则1≤x≤10,
则利润y=[60-3(x-1)][2(x-1)+8]=(63-3x)(2x+6)=6(-x2+18x+63)=6[-(x-9)2+144].
当x=9时,y取到最大值,故应生产第9档次的产品.
故答案为:9
则利润y=[60-3(x-1)][2(x-1)+8]=(63-3x)(2x+6)=6(-x2+18x+63)=6[-(x-9)2+144].
当x=9时,y取到最大值,故应生产第9档次的产品.
故答案为:9
点评:本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
练习册系列答案
相关题目
定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2]时,f(x)=x2-2x,若x∈[-4,-2]时,f(x)≥
(
-t)恒成立,则实数t的取值范围是( )
| 1 |
| 8 |
| 3 |
| t |
| A、(-∞,-1]∪(0,3] | ||||
B、(-∞,-
| ||||
| C、[-1,0)∪[3,+∞) | ||||
D、[-
|
函数y=cos(2x-
)的图象的一条对称轴方程是( )
| π |
| 2 |
A、x=-
| ||
B、x=-
| ||
C、x=
| ||
| D、x=π |
若函数f(x+1)的定义域是[-1,1],则函数g(x)=
的定义域是( )
| f(2x) |
| x-1 |
| A、[-1,0] |
| B、[0,1) |
| C、[0,1)∪(1.4] |
| D、(0,1) |