题目内容

如图,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中点.
(Ⅰ)求证:DE⊥平面PBC;
(Ⅱ)求二面角A-PD-E的余弦值.
考点:与二面角有关的立体几何综合题,直线与平面垂直的判定
专题:综合题,空间位置关系与距离,空间角
分析:(Ⅰ)以点A为坐标原点,建立坐标系,证明
DE
PB
=0,
DE
PC
=0,即可证明DE⊥平面PBC;
(Ⅱ)求出平面PAD的一个法向量、平面PCD的一个法向量,利用向量的夹角公式,即可求二面角A-PD-E的余弦值.
解答: (Ⅰ)证明:∵侧面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,
∴PA⊥AB,PA⊥AD⊥AD⊥AB,
以点A为坐标原点,建立如图所示的坐标系,设PA=AB=BC=2AD=2,则P(0,0,2),D(1,0,0),B(0,2,0),C(2,2,0),E(1,1,1),
DE
=(0,1,1),
PB
=(0,2,-2),
PC
=(2,2,-2),
DE
PB
=0,
DE
PC
=0,
∴DE⊥PB,DE⊥PC,
∵PB∩PC=P,
∴DE⊥平面PBC;
(Ⅱ)解:由(Ⅰ)可知平面PAD的一个法向量
m
=(0,2,0).
设平面PCD的一个法向量为
n
=(x,y,z),则
PD
=(1,0,-2),
PC
=(2,2,-2),
x-2z=0
2x+2y-2z=0

∴取
n
=(2,-1,1),
∴cos<
m
n
>=
-2
6
•2
=-
6
6
点评:本题考查了直线与平面垂直的判定,考查了利用空间向量求解二面角的大小,综合考查了学生的空间想象能力和思维能力,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网