题目内容
20.已知角A,B,C为等腰△ABC的内角,设向量$\overrightarrow{m}$=(2sinA-sinC,sinB),$\overrightarrow{n}$=(cosC,cosB),且$\overrightarrow{m}$∥$\overrightarrow{n}$,BC=$\sqrt{7}$(Ⅰ)求角B;
(Ⅱ)在△ABC的外接圆的劣弧$\widehat{AC}$上取一点D,使得AD=1,求sin∠DAC及四边形ABCD的面积.
分析 (Ⅰ)利用向量共线的条件,即可求角B;
(Ⅱ)求出CD,∠ADC=$\frac{2π}{3}$,由正弦定理可得sin∠DAC,即可求出四边形ABCD的面积.
解答 解:(Ⅰ)∵向量$\overrightarrow{m}$=(2sinA-sinC,sinB),$\overrightarrow{n}$=(cosC,cosB),且$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB=sin(B+C),
∴2sinAcosB=sinA,
∴cosB=$\frac{1}{2}$,
∵0<B<π,
∴B=$\frac{π}{3}$;
(Ⅱ)根据题意及(Ⅰ)可得△ABC是等边三角形,∠ADC=$\frac{2π}{3}$
△ADC中,由余弦定理可得$A{C}^{2}=A{D}^{2}+C{D}^{2}-2AD•CD•cos\frac{2π}{3}$,
∴CD2+CD-6=0,
∴CD=2,
由正弦定理可得sin∠DAC=$\frac{CDsin∠ADC}{AC}$=$\frac{\sqrt{21}}{7}$,
∴四边形ABCD的面积.S=$\frac{1}{2}×1×\sqrt{7}sin∠DAC$+$\frac{1}{2}×\sqrt{7}×\sqrt{7}sin∠ABC$=$\frac{9\sqrt{3}}{4}$.
点评 本题考查向量共线条件的运用,考查余弦定理、正弦定理,属于中档题.
练习册系列答案
相关题目
8.已知集合A={x∈N|3-2x>0},B={x|x2≤4},则A∩B=( )
| A. | {x|-2≤x<1} | B. | {x|x≤2} | C. | {0,1} | D. | {1,2} |
5.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的离心率为$\sqrt{5}$,则抛物线x2=4y的焦点到双曲线的渐近线的距离是( )
| A. | $\frac{{\sqrt{5}}}{10}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{4\sqrt{5}}}{5}$ |