题目内容
18.在(x2+2x+y)5的展开式中,x5y2的系数为60.分析 把(x2+2x+y)5化简成二项式机构,利用通项公式可得答案.
解答 解:由(x2+2x+y)5化简为[x2+2x)+y],
由通项公式Tr+1=${C}_{5}^{r}{y}^{r}({x}^{2}+2x)^{5-r}$,要出现y2,∴r=2.
二项式(x2+2x)3展开式中出现x5.
由通项公式Tk+1=${C}_{3}^{k}{x}^{2(3-k)}{2}^{k}{x}^{k}$,
∴2(3-k)+k=5,
可得:k=1.
∴x5y2的系数为${C}_{5}^{2}×2{×C}_{3}^{1}$=60.
故答案为:60.
点评 本题主要考查二项式定理对三项式的处理能力的应用,考查了二项式系数的性质,二项式展开式的通项公式,体现了转化的数学思想,属于中档题.
练习册系列答案
相关题目
6.已知复数Z为纯虚数,若(z+2)2-8i也是纯虚数,则Z的虚部为( )
| A. | 2 | B. | -2 | C. | -2i | D. | 2或-2 |
3.某程序框图如图所示,若输入的n=10,则输出结果为( )

| A. | $\frac{1}{10}$ | B. | $\frac{8}{9}$ | C. | $\frac{9}{10}$ | D. | $\frac{10}{11}$ |
9.
菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克) 清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克) 的统计表:
(1)在下面的坐标系中,描出散点图,并判断变量x与y的相关性;
(2)若用解析式$\widehaty=c{x^2}+d$作为蔬菜农药残量$\widehaty$与用水量x的回归方程,令ω=x2,计算平均值$\overlineω$与$\overline y$,完成以下表格(填在答题卡中),求出$\widehaty$与x的回归方程.(c,d精确到0.1)
(3)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请
估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据$\sqrt{5}≈2.236$)
(附:线性回归方程$\widehaty=bx+a$中系数计算公式分别为;$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$)
| x | 1 | 2 | 3 | 4 | 5 |
| y | 58 | 54 | 39 | 29 | 10 |
(2)若用解析式$\widehaty=c{x^2}+d$作为蔬菜农药残量$\widehaty$与用水量x的回归方程,令ω=x2,计算平均值$\overlineω$与$\overline y$,完成以下表格(填在答题卡中),求出$\widehaty$与x的回归方程.(c,d精确到0.1)
| ω | 1 | 4 | 9 | 16 | 25 |
| y | 58 | 54 | 39 | 29 | 10 |
| ${ω_i}-\overlineω$ | -10 | -7 | -2 | 5 | 14 |
| ${y_i}-\overline y$ | 20 | 16 | 1 | -28 |
估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据$\sqrt{5}≈2.236$)
(附:线性回归方程$\widehaty=bx+a$中系数计算公式分别为;$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$)
10.椭圆的中心在坐标原点,焦点在x轴上,左右顶点分别为A1、A2,上下顶点分别为B1、B2,F2为右焦点,延长B2F2与A2B1交于点P,若∠B2PA2为钝角,则该椭圆离心率的取值范围是( )
| A. | $({\frac{{\sqrt{5}-2}}{2},0})$ | B. | $({0,\frac{{\sqrt{5}-2}}{2}})$ | C. | $({0,\frac{{\sqrt{5}-1}}{2}})$ | D. | $({\frac{{\sqrt{5}-1}}{2},1})$ |