题目内容

18.若tan($α+\frac{π}{3}$)=2$\sqrt{3}$,则tan($α-\frac{2π}{3}$)的值是2$\sqrt{3}$,2sin2α-cos2α 的值是-$\frac{43}{52}$.

分析 利用两角和差的正切公式、诱导公式求得tanα的值,再利用同角三角函数的基本关系求得要求式子的值.

解答 解:∵tan($α+\frac{π}{3}$)=2$\sqrt{3}$,
则tan($α-\frac{2π}{3}$)=tan[($α+\frac{π}{3}$)-π]=tan($α+\frac{π}{3}$)=2$\sqrt{3}$,
∵tan($α+\frac{π}{3}$)=$\frac{tanα+tan\frac{π}{3}}{1-tanα•tan\frac{π}{3}}$=$\frac{tanα+\sqrt{3}}{1-tanα•\sqrt{3}}$=2$\sqrt{3}$,∴tanα=$\frac{\sqrt{3}}{7}$,
∴2sin2α-cos2α=$\frac{{2sin}^{2}α{-cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{2tan}^{2}α-1}{{tan}^{2}α+1}$=-$\frac{43}{52}$,
故答案为:$2\sqrt{3}$,$-\frac{43}{52}$;

点评 本题主要考查两角和差的正切公式、诱导公式、同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网