题目内容

13.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则ω,φ的值分别是(  )
A.2,-$\frac{π}{6}$B.2,-$\frac{π}{3}$C.4,-$\frac{π}{3}$D.4,-$\frac{π}{6}$

分析 根据图象的两个点A、B的横坐标,得到四分之三个周期的值,得到周期的值,做出ω的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果.

解答 解:由图象可得:$\frac{3T}{4}$=$\frac{5π}{12}$-(-$\frac{π}{3}$)=$\frac{3π}{4}$,
∴T=$\frac{2π}{ω}$=π,
∴ω=2,
又由函数f(x)的图象经过($\frac{5π}{12}$,2),
∴2=2sin(2×$\frac{5π}{12}$+φ),
∴$\frac{5π}{6}$+φ=2kπ+$\frac{π}{2}$,(k∈Z),
即φ=2kπ-$\frac{π}{3}$,k∈Z,
又由-$\frac{π}{2}$<φ<$\frac{π}{2}$,则φ=-$\frac{π}{3}$.
故选:B.

点评 本题考查有部分图象确定函数的解析式,本题解题的关键是确定初相的值,这里利用代入点的坐标求出初相,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网