题目内容
18.已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,求实数a的值.分析 根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.
解答 解:圆的标准方程为(x+1)2+(y-2)2=9,圆心C(-1,2),半径r=3,
∵AC⊥BC,
∴圆心C到直线AB的距离d=$\frac{3\sqrt{2}}{2}$,
即d=$\frac{|-1-2+a|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$,
即|a-3|=3,
解得a=0或a=6.
点评 本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.
练习册系列答案
相关题目
10.
某校为了解高三学生英语听力情况,抽查了甲、乙两班各十名学生的一次英语听力成绩,并将所得数据用茎叶图表示(如图所示),则以下判断正确的是( )
| A. | 甲组数据的众数为28 | B. | 甲组数据的中位数是22 | ||
| C. | 乙组数据的最大值为30 | D. | 乙组数据的极差为16 |
7.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5得数据如下表:
(Ⅰ)根据上表数据求出y与x的线性回归直线方程$\hat y=\hat bx+\hat a$,
(Ⅱ)若周六同一时间段车流量是25万辆,试根据(Ⅰ)中求出的线性回归方程预测此时PM2.5的浓度是多少?(保留整数)
参考公式其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$:方程$\hat y=\hat bx+\hat a$.
| 时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
| 车流量x(万辆) | 50 | 51 | 54 | 57 | 58 |
| PM2.5的浓度y(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(Ⅱ)若周六同一时间段车流量是25万辆,试根据(Ⅰ)中求出的线性回归方程预测此时PM2.5的浓度是多少?(保留整数)
参考公式其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$:方程$\hat y=\hat bx+\hat a$.
8.下列函数中,在区间(0,+∞)上为增函数的是( )
| A. | y=$\frac{1}{x}$ | B. | y=-x2 | C. | y=($\frac{1}{2}$)x | D. | y=log2x |