题目内容

设F1,F2为双曲线
x2
a2
-
y2
b2
=1的左右焦点,以F1F2为直径作圆与双曲线左支交于A,B两点,且∠AF1B=120°.则双曲线的离心率为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据以线段F1F2为直径的圆交双曲线左支于A,B两点,且∠AF1B=120°,可得△OF1A是等边三角形,再利用双曲线的定义,即可求得离心率.
解答: 解:∵以线段F1F2为直径的圆交双曲线左支于A,B两点,且∠AF1B=120°,
∴△OF1A是等边三角形
∴|AF1|=c,|AF2|=
|F1F2|2-|AF1|2
=
3
c,
∴2a=|AF2|-|AF1|=(
3
-1)c,
∴e=
c
a
=
2
3
-1
=
3
+1.
故答案为:
3
+1.
点评:本题考查双曲线的性质,考查双曲线的定义,考查运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网