ÌâÄ¿ÄÚÈÝ
13£®£¨1£©Èô¡÷F0F1F2ÊDZ߳¤Îª1µÄµÈ±ßÈý½ÇÐΣ¬Çó¡°¹ûÔ²¡±µÄ·½³Ì£»
£¨2£©µ±|A1A2|£¾|B1B2|ʱ£¬Çó$\frac{b}{a}$µÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÓÉÈý½ÇÐÎF0F1F2ÊDZ߳¤Îª1µÄµÈ±ßÈý½ÇÐΣ¬µÃ³öa£¬b£¬cµÄ¹ØÏµ£¬Çó³öa£¬b£¬cµÄÖµ£¬½ø¶øµÃ³ö¡°¹ûÔ²¡±µÄ·½³Ì£»
£¨2£©ÓÉ|A1A2|£¾|B1B2|¿ÉµÃa£¬b£¬cµÄ²»µÈ¹ØÏµÊ½£¬°ÑcÓÃa£¬b´úÌæ£¬µÃµ½º¬ÓÐa£¬bµÄ²»µÈʽ£¬Çó½â²»µÈʽµÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬F0£¨c£¬0£©£¬F1£¨0£¬-$\sqrt{{b}^{2}-{c}^{2}}$£©£¬F2£¨0£¬$\sqrt{{b}^{2}-{c}^{2}}$£©£¬
Ôò|F0F1|=$\sqrt{£¨{b}^{2}-{c}^{2}£©+{c}^{2}}$=b=1£¬|F1F2|=2$\sqrt{{b}^{2}-{c}^{2}}$=1£¬
¡à${c}^{2}=\frac{3}{4}$£¬${a}^{2}={b}^{2}+{c}^{2}=1+\frac{3}{4}=\frac{7}{4}$£¬
¹ÊËùÇó¡°¹ûÔ²¡±·½³ÌΪ$\frac{4}{7}{x}^{2}+{y}^{2}=1$£¨x¡Ý0£©ºÍ${y}^{2}+\frac{4}{3}{x}^{2}=1$£¨x¡Ü0£©£»
£¨2£©ÓÉ|A1A2|£¾|B1B2|£¬µÃa+c£¾2b£¬c£¾2b-a£¬¼´$\sqrt{{a}^{2}-{b}^{2}}$£¾2b-a£®
Á½±ßƽ·½µÃa2-b2£¾£¨2b-a£©2£¬
Ôò$\frac{b}{a}£¼\frac{4}{5}$£¬ÓÖb£¾c£¬
¡àb2£¾c2£¬¼´b2£¾a2-b2£¬
¡à$\frac{{b}^{2}}{{a}^{2}}£¾\frac{1}{2}$£¬¼´$\frac{b}{a}$$£¾\frac{\sqrt{2}}{2}$£¬
¹Ê$\frac{b}{a}$¡Ê£¨$\frac{\sqrt{2}}{2}£¬\frac{4}{5}$£©£®
µãÆÀ ±¾ÌâÊÇж¨ÒåÌ⣬¿¼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÊýѧת»¯Ë¼Ïë·½·¨£¬ÊÇÖеµÌ⣮
| A£® | A⊆B | B£® | B⊆A | C£® | A¡É∁RB=R | D£® | A¡ÉB=∅ |
| A£® | k=2 | B£® | k=3 | C£® | .k=$\frac{1}{3}$»ò3 | D£® | k=2»ò$\frac{1}{2}$ |
| A£® | 12+13i | B£® | 13+12i | C£® | -13i | D£® | 13i |
| A£® | i | B£® | -i | C£® | 1 | D£® | -1 |