题目内容
3.圆$ρ=\sqrt{2}(cosθ+sinθ)$的圆心的极坐标是(1,$\frac{π}{4}$);半径是1.分析 把方程两边同时乘以ρ,转化为直角坐标方程,求出圆心的直角坐标和半径,再结合$ρ=\sqrt{{x}^{2}+{y}^{2}}$,x=ρcosθ求圆心的极坐标.
解答 解:由$ρ=\sqrt{2}(cosθ+sinθ)$,得
${ρ}^{2}=\sqrt{2}ρcosθ+\sqrt{2}ρsinθ$,
∴${x}^{2}+{y}^{2}-\sqrt{2}x-\sqrt{2}y=0$,即$(x-\frac{\sqrt{2}}{2})^{2}+(y-\frac{\sqrt{2}}{2})^{2}=1$.
则圆心的直角坐标为($\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$),半径为1.
则$ρ=\sqrt{(\frac{\sqrt{2}}{2})^{2}+(\frac{\sqrt{2}}{2})^{2}}=1$,cosθ=$\frac{\sqrt{2}}{2}$,
∵($\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$)在第一象限,∴θ=$\frac{π}{4}$.
∴圆心的极坐标是(1,$\frac{π}{4}$).
故答案为:$(1,\frac{π}{4})$;1.
点评 本题考查简单曲线的极坐标方程,注意极坐标方程与普通方程的互化公式的运用,是基础题.
练习册系列答案
相关题目
13.给出以下结论:
(1)直线a∥平面α,直线b?α,则a∥b.
(2)若a?α,b?α,则a、b无公点.
(3)若a?α,则a∥α或a与α相交
(4)若a∩α=A,则a?α.
正确的个数为( )
(1)直线a∥平面α,直线b?α,则a∥b.
(2)若a?α,b?α,则a、b无公点.
(3)若a?α,则a∥α或a与α相交
(4)若a∩α=A,则a?α.
正确的个数为( )
| A. | 1个 | B. | 4个 | C. | 3个 | D. | 2个 |
14.已知ω>0,函数f(x)=sinωx在区间$[{-\frac{π}{4},\frac{π}{4}}]$上恰有9个零点,则ω的取值范围是( )
| A. | 16≤ω<20 | B. | 16≤ω≤20 | C. | 16≤ω<18 | D. | 16≤ω≤18 |
18.已知梯形ABCD中,AB⊥AD,$\overrightarrow{AB}=3\overrightarrow{DC},cos∠DAC=\frac{{\sqrt{3}}}{2},\overrightarrow{BE}=m\overrightarrow{BC}$(0<m<1),若|$\overrightarrow{AE}$|2=$|{\overrightarrow{AC}}||{\overrightarrow{AB}}$|,则$\frac{CE}{CB}$=( )
| A. | $\frac{1+\sqrt{15}}{7}$ | B. | $\frac{1}{7}$ | C. | $\frac{2}{3}$ | D. | $\frac{2+\sqrt{15}}{7}$ |
15.△ABC中,a,b,c分别为角A,B,C的对边,a=$\sqrt{3}$,b=$\sqrt{2}$,B=45°,则角C的大小为( )
| A. | 15° | B. | 75° | C. | 15°或75° | D. | 60°或120° |
12.在复平面内,复数$\frac{2}{1+i}$(i为虚数单位)对应的点与原点的距离是( )
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |