ÌâÄ¿ÄÚÈÝ
ÒÑÖªÊýÁÐ{an}ÖУ¬a1=2£¬a2=3£¬ÆäǰnÏîºÍSnÂú×ãSn+1+Sn-1=2Sn+1£¨n¡Ý2£¬n¡ÊN*£©£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ¬²¢Çó{an}µÄͨÏʽ£»
£¨2£©Éèbn=2n•an£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨3£©ÉèCn=4n+£¨-1£©n-1•¦Ë2an£¨¦ËΪ·ÇÁãÕûÊý£¬n¡ÊN*£©£¬ÊÇ·ñ´æÔÚÈ·¶¨¦ËµÄÖµ£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬ÓÐCn+1£¾Cnºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ¬²¢Çó{an}µÄͨÏʽ£»
£¨2£©Éèbn=2n•an£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨3£©ÉèCn=4n+£¨-1£©n-1•¦Ë2an£¨¦ËΪ·ÇÁãÕûÊý£¬n¡ÊN*£©£¬ÊÇ·ñ´æÔÚÈ·¶¨¦ËµÄÖµ£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬ÓÐCn+1£¾Cnºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÊýÁеÄÇóºÍ,ÊýÁеÝÍÆÊ½
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÀûÓõÝÍÆÊ½¼°µÈ²îÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£»
£¨2£©ÀûÓá°´íλÏà¼õ·¨¡±¡¢µÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£»
£¨3£©ÓÉ£¨1£©¿ÉµÃ£ºCn=4n+£¨-1£©n-1¡Á2n+1£¬¼ÙÉè´æÔÚ¦ËʹµÃ¶ÔÈÎÒân¡ÊN*£¬ÓÐCn+1£¾Cnºã³ÉÁ¢£¬Cn+1-Cn=4n+1+£¨-1£©n¡Á2n+2-[4n+£¨-1£©n-1•¦Ë¡Á2n+1]£¬»¯Îª£¨-1£©n-1•¦Ë£¼2n-1ºã³ÉÁ¢£®¶Ô¦Ë·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃ³ö£®
£¨2£©ÀûÓá°´íλÏà¼õ·¨¡±¡¢µÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£»
£¨3£©ÓÉ£¨1£©¿ÉµÃ£ºCn=4n+£¨-1£©n-1¡Á2n+1£¬¼ÙÉè´æÔÚ¦ËʹµÃ¶ÔÈÎÒân¡ÊN*£¬ÓÐCn+1£¾Cnºã³ÉÁ¢£¬Cn+1-Cn=4n+1+£¨-1£©n¡Á2n+2-[4n+£¨-1£©n-1•¦Ë¡Á2n+1]£¬»¯Îª£¨-1£©n-1•¦Ë£¼2n-1ºã³ÉÁ¢£®¶Ô¦Ë·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃ³ö£®
½â´ð£º
£¨1£©Ö¤Ã÷£ºÓÉÒÑÖª£ºSn+1+Sn-1=2Sn+1£¨n¡Ý2£¬n¡ÊN*£©£¬Sn+2+Sn=2Sn+1+1£¬
¡àan+2+an=2an+1£¬
µ±n=2ʱ£¬S3+S1=2S2+1£¬
¡à2a1+a2+a3=2a1+2a2+1£¬a3=a2+1=4£¬
¡à2a2=a1+a3=6£¬
¼´ÉÏʽ¶ÔÓÚn=1ʱҲ³ÉÁ¢£®
¡àÊýÁÐ{an}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ2£¬¹«²îΪ1£®
¡àan=2+£¨n-1£©=n+1£®
£¨2£©½â£ºÓÉ£¨1£©bn=2n•an=£¨n+1£©•2n£»
¡àÊýÁÐ{bn}µÄǰnÏîºÍTn=2¡Á2+3¡Á22+4¡Á23+¡+£¨n+1£©¡Á2n£¬
2Tn=2¡Á22+3¡Á23+4¡Á24+¡+n¡Á2n+£¨n+1£©¡Á2n+1£¬
¡à-Tn=2¡Á2+22+23+¡+2n-£¨n+1£©¡Á2n+1=2+
-£¨n+1£©¡Á2n+1=-n¡Á2n+1£¬
¡àTn=n¡Á2n+1£®
£¨3£©ÓÉ£¨1£©¿ÉµÃ£ºCn=4n+£¨-1£©n-1•¦Ë2an=4n+£¨-1£©n-1¡Á2n+1£¬
¼ÙÉè´æÔÚ¦ËʹµÃ¶ÔÈÎÒân¡ÊN*£¬ÓÐCn+1£¾Cnºã³ÉÁ¢£¬
Cn+1-Cn=4n+1+£¨-1£©n¡Á2n+2-[4n+£¨-1£©n-1•¦Ë¡Á2n+1]£¬»¯Îª£¨-1£©n-1•¦Ë£¼2n-1ºã³ÉÁ¢£®
£¨¢¡£©µ±nÎªÆæÊýʱ£¬¼´¦Ë£¼2n-1ºã³ÉÁ¢£¬
µ±ÇÒ½öµ±n=1ʱ£¬2n-1ÓÐ×îСֵΪ1£¬¡à¦Ë£¼1£®
£¨¢¢£©µ±nΪżÊýʱ£¬¼´¦Ë£¾-2n-1ºã³ÉÁ¢£¬
µ±ÇÒ½öµ±n=2ʱ£¬¦Ë£¾-2n-1ºã³ÉÁ¢£¬
µ±ÇÒ½öµ±n=2ʱ£¬-2n-1ÓÐ×î´óÖµ-2£¬
¡à¦Ë£¾-2£®¼´-2£¼¦Ë£¼1£¬ÓÖ¦ËΪ·ÇÁãÕûÊý£¬Ôò¦Ë=-1£®
×ÛÉÏËùÊö£¬´æÔÚ¦Ë=-1£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐCn+1£¾Cn£®
¡àan+2+an=2an+1£¬
µ±n=2ʱ£¬S3+S1=2S2+1£¬
¡à2a1+a2+a3=2a1+2a2+1£¬a3=a2+1=4£¬
¡à2a2=a1+a3=6£¬
¼´ÉÏʽ¶ÔÓÚn=1ʱҲ³ÉÁ¢£®
¡àÊýÁÐ{an}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ2£¬¹«²îΪ1£®
¡àan=2+£¨n-1£©=n+1£®
£¨2£©½â£ºÓÉ£¨1£©bn=2n•an=£¨n+1£©•2n£»
¡àÊýÁÐ{bn}µÄǰnÏîºÍTn=2¡Á2+3¡Á22+4¡Á23+¡+£¨n+1£©¡Á2n£¬
2Tn=2¡Á22+3¡Á23+4¡Á24+¡+n¡Á2n+£¨n+1£©¡Á2n+1£¬
¡à-Tn=2¡Á2+22+23+¡+2n-£¨n+1£©¡Á2n+1=2+
| 2(2n-1) |
| 2-1 |
¡àTn=n¡Á2n+1£®
£¨3£©ÓÉ£¨1£©¿ÉµÃ£ºCn=4n+£¨-1£©n-1•¦Ë2an=4n+£¨-1£©n-1¡Á2n+1£¬
¼ÙÉè´æÔÚ¦ËʹµÃ¶ÔÈÎÒân¡ÊN*£¬ÓÐCn+1£¾Cnºã³ÉÁ¢£¬
Cn+1-Cn=4n+1+£¨-1£©n¡Á2n+2-[4n+£¨-1£©n-1•¦Ë¡Á2n+1]£¬»¯Îª£¨-1£©n-1•¦Ë£¼2n-1ºã³ÉÁ¢£®
£¨¢¡£©µ±nÎªÆæÊýʱ£¬¼´¦Ë£¼2n-1ºã³ÉÁ¢£¬
µ±ÇÒ½öµ±n=1ʱ£¬2n-1ÓÐ×îСֵΪ1£¬¡à¦Ë£¼1£®
£¨¢¢£©µ±nΪżÊýʱ£¬¼´¦Ë£¾-2n-1ºã³ÉÁ¢£¬
µ±ÇÒ½öµ±n=2ʱ£¬¦Ë£¾-2n-1ºã³ÉÁ¢£¬
µ±ÇÒ½öµ±n=2ʱ£¬-2n-1ÓÐ×î´óÖµ-2£¬
¡à¦Ë£¾-2£®¼´-2£¼¦Ë£¼1£¬ÓÖ¦ËΪ·ÇÁãÕûÊý£¬Ôò¦Ë=-1£®
×ÛÉÏËùÊö£¬´æÔÚ¦Ë=-1£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐCn+1£¾Cn£®
µãÆÀ£º±¾Ì⿼²éÁ˵ÝÍÆÊ½µÄÓ¦ÓᢵȲîÊýÁеÄͨÏʽ¡¢¡°´íλÏà¼õ·¨¡±¡¢µÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½£¬¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èôx2£¾x1£¾1Ôò£¨¡¡¡¡£©
| A¡¢e x1-x2£¼lgx1-lgx2 | ||
B¡¢e
| ||
| C¡¢x1 x2£¾x2 x1 | ||
| D¡¢x1 x2£¼x2 x1 |
Ô²×¶µÄÖá½ØÃæSABÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬OΪµ×ÃæµÄÖÐÐÄ£¬MΪSOµÄÖе㣬¶¯µãPÔÚÔ²×¶µ×ÃæÄÚ£¨°üÀ¨Ô²ÖÜ£©£¬Èô AM¡ÍMP£¬ÔòµãPÐγɵĹ켣µÄ³¤¶ÈΪ£¨¡¡¡¡£©
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|
Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊäÈëµÄxµÄֵΪ-
£¬ÔòÊä³öµÄiµÄֵΪ£¨¡¡¡¡£©

| 3 |
| 2 |
| A¡¢4 | B¡¢3 | C¡¢2 | D¡¢1 |