题目内容
18.将函数f(x)=cos(x+$\frac{π}{6}$)图象上所有点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数g(x)图象,则函数g(x)的解析式为( )| A. | g(x)=cos(2x+$\frac{π}{3}$) | B. | g(x)=cos(2x+$\frac{π}{6}$) | C. | g(x)=cos($\frac{x}{2}$+$\frac{π}{3}$) | D. | g(x)=cos($\frac{x}{2}$+$\frac{π}{6}$) |
分析 根据函数y=Asin(ωx+φ)的图象变换规律即可得到结论.
解答 解:函数y=sin(x+$\frac{π}{6}$)的图象上所有点的横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),
得到g(x)=sin(2x+$\frac{π}{6}$)的函数图象.
故选:B.
点评 本题主要考查函数解析的求解,根据函数y=Asin(ωx+φ)的图象变换规律求解是解决本题的关键.
练习册系列答案
相关题目
8.实数a,b,则(a+b)(1+a)>0,是$\frac{1-b}{1+a}$<1恒成立的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
9.
某校高二年级共有1600名学生,其中男生960名,640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A等(优秀),在[60,80)的学生可取得B等(良好),在[40,60)的学生可取得C等(合格),在不到40分的学生只能取得D等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.
(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;
(Ⅱ) 请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;
(Ⅱ) 请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?
| 数学成绩优秀 | 数学成绩不优秀 | 合计 | |
| 男生 | a=12 | b= | |
| 女生 | c= | d=34 | |
| 合计 | n=100 |
| P(k2≥k0) | 0.15 | 0.10 | 0.05 |
| k0 | 2.072 | 2.706 | 3.841 |
7.在等比数列{an}中,已知a2+a3=1,a3+a4=$\sqrt{2}$,则a14+a15等于( )
| A. | 16 | B. | 32 | C. | 64 | D. | 128 |