题目内容
4.化简$\frac{cos(π+α)•sin(α+2π)}{sin(-α-π)•(cos-π-α)}$.分析 由条件利用诱导公式进行化简所给的式子,可得结果.
解答 解:$\frac{cos(π+α)•sin(α+2π)}{sin(-α-π)•(cos-π-α)}$=$\frac{-cosα•sinα}{sinα•(-cosα)}$=1.
点评 本题主要考查利用诱导公式进行化简求值,属于基础题.
练习册系列答案
相关题目
17.函数f(x)=aex+x,若1<f'(0)<2,则实数a的取值范围是( )
| A. | $({0,\frac{1}{e}})$ | B. | (0,1) | C. | (1,2) | D. | (2,3) |
8.已知$tan(α+β)=\frac{2}{5}$,$tanβ=\frac{1}{3}$,则$tan(α-\frac{π}{4})$的值为( )
| A. | $\frac{8}{9}$ | B. | -$\frac{8}{9}$ | C. | $\frac{1}{17}$ | D. | $\frac{16}{17}$ |
15.某种产品的年销售量y与该年广告费用支出x有关,现收集了4组观测数据列于下表:
现确定以广告费用支出x为解释变量,销售量y为预报变量对这两个变量进行统计分析.
(1)已知这两个变量满足线性相关关系,试建立y与x之间的回归方程;
(2)假如2014年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量y.
(3)根据公式R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,计算相关指数R2.
| x(万元) | 1 | 4 | 5 | 6 |
| y(万元) | 30 | 40 | 60 | 50 |
(1)已知这两个变量满足线性相关关系,试建立y与x之间的回归方程;
(2)假如2014年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量y.
(3)根据公式R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,计算相关指数R2.
12.通过随机询问200名性别不同的大学生是否爱好踢毽子运动,计算得到统计量K2的观测值k≈4.892,参照附表,得到的正确结论是( )
| P(K2≥k) | 0.10 | 0.05 | 0.025 |
| k | 2.706 | 3.841 | 5.024 |
| A. | 有97.5%以上的把握认为“爱好该项运动与性别有关” | |
| B. | 有97.5%以上的把握认为“爱好该项运动与性别无关” | |
| C. | 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关” | |
| D. | 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关” |