ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªÍÖÔ²CµÄ½¹µãÊÇ${F_1}£¨-2\sqrt{2}£¬0£©£¬{F_2}£¨2\sqrt{2}£¬0£©$£¬ÆäÉϵ͝µãPÂú×ã$|{P{F_1}}|+|{P{F_2}}|=4\sqrt{3}$£®µãOÎª×ø±êԵ㣬ÍÖÔ²CµÄ϶¥µãΪR£®£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©Éè¹ýµã£¨0£¬1£©ÇÒбÂÊΪkµÄÖ±Ïßl2½»ÍÖÔ²CÓÚM£¬NÁ½µã£¬ÊÔ̽¾¿£ºÎÞÂÛkÈ¡ºÎֵʱ£¬$\overrightarrow{RM}•\overrightarrow{RN}$ÊÇ·ñºãΪ¶¨Öµ£®ÊÇÇó³ö¶¨Öµ£¬²»ÊÇ˵Ã÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒâÉè³öÍÖÔ²·½³Ì£¬ÓÉÒÑÖªÇóµÃa£¬½áºÏÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©Ð´³öÖ±Ïßl2µÄ·½³Ì£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµµÃµ½M£¬NÁ½µãºá×ø±êµÄºÍÓë»ý£¬ÓÉÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê±íʾÇóµÃ$\overrightarrow{RM}•\overrightarrow{RN}$ºãΪ¶¨Öµ£®
½â´ð ½â£º£¨¢ñ£©ÉèÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£®
¡ßÍÖÔ²Éϵ͝µãPÂú×ã$|{P{F_1}}|+|{P{F_2}}|=4\sqrt{3}$£¬
¡à2a=4$\sqrt{3}$£¬a=2$\sqrt{3}$£®
ÓÖc=2$\sqrt{2}$£¬¡àa2=12£¬b2=a2-c2=4£¬
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1£»
£¨¢ò£©Éèl2£ºy=kx+1£¬ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}+3{y}^{2}-12=0}\end{array}\right.$£¬
ÏûÈ¥yµÃ£¨1+3k2£©x2+6kx-9=0£¬
Ó֡ߵ㣨0£¬1£©ÔÚÍÖÔ²CÄÚ£¬¡à¡÷£¾0ºã³ÉÁ¢£®
ÉèM £¨x1£¬kx1+1£©£¬N£¨x2£¬x2+1£©£¬
Ôòx1+x2=-$\frac{6k}{1+3{k}^{2}}$£¬x1x2=-$\frac{9}{1+3{k}^{2}}$£¬
Ò×ÖªR£¨0£¬-2£©£¬$\overrightarrow{RM}$=£¨x1£¬kx1+3£©£¬$\overrightarrow{RN}$=£¨x2£¬kx2+3£©£¬
¡à$\overrightarrow{RM}$•$\overrightarrow{RN}$=x1x2+£¨kx1+3£©£¨kx2+3£©=£¨1+k2£©x1x2+3k£¨x1+x2£©+9
=£¨1+k2£©•£¨-$\frac{9}{1+3{k}^{2}}$£©+3k•£¨-$\frac{6k}{1+3{k}^{2}}$£©+9=0£¬ÓëkÎ޹أ®
ÔòÎÞÂÛkÈ¡ºÎֵʱ£¬$\overrightarrow{RM}•\overrightarrow{RN}$ºãΪ¶¨Öµ0£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏߺÍÔ²×¶ÇúÏß¼äµÄ¹ØÏµ£¬×¢ÒâÔËÓÃÁªÁ¢·½³Ì×飬ÔËÓÃΤ´ï¶¨Àí£¬¿¼²éÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê±íʾ£¬»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊÇÖеµÌ⣮
| ×é±ð | [65£¬75£© | [75£¬85£© | [85£¬95£© | [95£¬105£© | [105£¬115£© | [115£¬150£© |
| ƵÊý | 3 | 4 | 13 | 15 | 10 | 5 |
£¨1£©ÔÚÕâ50Ãû²Î¿¼ÈËÔ±ÖÐÈÎȡһ룬Çó·ÖÊý²»µÍÓÚ105·ÖµÄ¸ÅÂÊ£»
£¨2£©ÎªÁ˽øÒ»²½Á˽âÕâЩ²Î¿¼ÈËÔ±µÄµÃ·ÖÇé¿ö£¬ÔÙ´Ó·ÖÊýÔÚ[65£¬75£©µÄ²Î¿¼ÈËÔ±A£¬B£¬CÖÐÑ¡³ö2룬´Ó·ÖÊýÔÚ[115£¬150£©ÖеIJο¼ÈËÔ±D£¬E£¬F£¬G£¬HÖÐÑ¡³ö1λ½øÐÐÑо¿£¬ÇóAºÍDͬʱ±»Ñ¡µ½µÄ¸ÅÂÊ£®
| A£® | ¶¼ÓëÖ±ÏßaÏཻµÄÁ½ÌõÖ±ÏßÈ·¶¨Ò»¸öÆ½Ãæ | |
| B£® | Á½ÌõÖ±ÏßÈ·¶¨Ò»¸öÆ½Ãæ | |
| C£® | ¹ýÒ»ÌõÖ±Ïߵį½ÃæÓÐÎÞÊý¶à¸ö | |
| D£® | Á½¸öÏà½»Æ½ÃæµÄ½»ÏßÊÇÒ»ÌõÏß¶Î |
| A£® | a+b=22 | B£® | a+b=21 | C£® | ab=20 | D£® | ab=21 |
| A£® | i£¾10 | B£® | i£¾11 | C£® | i£¼=10 | D£® | i£¼=11 |
| A£® | $\frac{1}{45}$ | B£® | $\frac{1}{86}$ | C£® | $\frac{1}{122}$ | D£® | $\frac{1}{167}$ |