题目内容

3.设集合A={x|y=$\sqrt{x-1}$+$\sqrt{4-x}$,x∈z},B={x|-1<x-a<1,a∈R}.
(1)用列举法表示集合A;
(2)若集合A∩B中恰好有两个元素,试求a的取值范围.

分析 (1)由题意得$\left\{\begin{array}{l}{x-1≥0}\\{4-x≥0}\end{array}\right.$,从而可得A={1,2,3,4};
(2)化简B=(a-1,a+1);从而分A∩B={1,2}或{2,3}或{3,4}进行讨论即可.

解答 解:(1)由题意得,$\left\{\begin{array}{l}{x-1≥0}\\{4-x≥0}\end{array}\right.$,
又∵x∈z,
∴A={1,2,3,4};
(2)B={x|-1<x-a<1,a∈R}=(a-1,a+1);
∵集合A∩B中恰好有两个元素,
∴A∩B={1,2}或{2,3}或{3,4};
∴$\left\{\begin{array}{l}{a-1<1}\\{2<a+1≤3}\end{array}\right.$或$\left\{\begin{array}{l}{1≤a-1<2}\\{3<a+1≤4}\end{array}\right.$或$\left\{\begin{array}{l}{2≤a-1<3}\\{a+1>4}\end{array}\right.$,
解得,1<a<2或2<a<3或3<a<4.

点评 本题考查了集合的化简与运算,同时考查了分类讨论的思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网