题目内容
10.二进制数1101100(2)化为十进制数是108.分析 利用1101100(2)=1×26+1×25+1×23+1×22=108(10).即可得出.
解答 解:1101100(2)=1×26+1×25+1×23+1×22=108(10).
故答案是:108
点评 本题考查了把“二进制”数化为“十进制”的方法,属于基础题.
练习册系列答案
相关题目
18.已知双曲线的一条渐近线过点$({2,\sqrt{3}})$,且双曲线的一个焦点在抛物线${x^2}=4\sqrt{7}y$的准线上,则双曲线的标准方程为( )
| A. | $\frac{y^2}{3}-\frac{x^2}{4}=1$ | B. | $\frac{y^2}{4}-\frac{x^2}{3}=1$ | C. | $\frac{x^2}{3}-\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ |
5.已知正方形ABCD的面积为2,点P在边AB上,则$\overrightarrow{PD}•\overrightarrow{PC}$的最小值为( )
| A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\sqrt{2}$ |
2.已知集合A={x|x2-x-2≤0},B=Z,则A∩B=( )
| A. | {-1,0,1,2} | B. | {-2,-1,0,1} | C. | {0,1} | D. | {-1,0} |