题目内容
已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6
(1)求{an}的通项公式an;
(2)若数若数列{bn}满足:b1=
,b2=
+
,b3=
+
+
,bn=
+
+
+…+
,设数列{bn}的前n项和为Tn,求证:Tn>2n-2.
(1)求{an}的通项公式an;
(2)若数若数列{bn}满足:b1=
| 1 |
| a1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
考点:数列的求和,等比数列的前n项和
专题:等差数列与等比数列
分析:由已知条件推导出an=2n-1,从而得到bn=2-
,由此利用分组求和法求出Tn=2n+
-2,从而能够证明Tn>2n-2.
| 2 |
| 2n |
| 2 |
| 2n |
解答:
解:∵{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,
∴a1=1,
=
,
即9-9q3=1-q6,解得q3=8或q3=1(舍),∴q=2.
∴an=2n-1,
∴bn=
+
+
+…+
=1+
+
+…+
=
=2-
,
∴Tn=2-
+2-
+2-
+…+2-
=2n-2(
+
+
+…+
)
=2n-2•
=2n-(2-
)
=2n+
-2,
∴Tn>2n-2.
∴a1=1,
| 9a1(1-q3) |
| 1-q |
| a1(1-q6) |
| 1-q |
即9-9q3=1-q6,解得q3=8或q3=1(舍),∴q=2.
∴an=2n-1,
∴bn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
1×(1-
| ||
1-
|
| 2 |
| 2n |
∴Tn=2-
| 2 |
| 2 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 2n |
=2n-2(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
=2n-2•
| ||||
1-
|
=2n-(2-
| 2 |
| 2n |
=2n+
| 2 |
| 2n |
∴Tn>2n-2.
点评:本题考查数列的通项公式的求法,考查不等式的证明,是中档题,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关题目