题目内容
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*).
(1)证明:数列{an}为等比数列;
(2)数列{an}满足bn=an•(log2an+1)(n∈N*),求其前n项和的Tn.
(1)证明:数列{an}为等比数列;
(2)数列{an}满足bn=an•(log2an+1)(n∈N*),求其前n项和的Tn.
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:(1)当n=1时,易得a1=1;当n≥2时,解得an=2an-1即an=2an-1(n≥2),且a1=1,从而{an}是以1为首项,以2为公比的等比数列;
(2)由(1)得an=2n-1(n∈N*).可求出bn=2n-1•n,设Tn=1×20+2×21+3×22+…+n×2n-1①,2Tn=1×2+2×22+3×23+…+n×2n②,①-②可解得Tn=(n-1)×2n+1.
(2)由(1)得an=2n-1(n∈N*).可求出bn=2n-1•n,设Tn=1×20+2×21+3×22+…+n×2n-1①,2Tn=1×2+2×22+3×23+…+n×2n②,①-②可解得Tn=(n-1)×2n+1.
解答:
解:(1)当n=1时,a1=2a1-1⇒a1=1;
当n≥2时,
⇒an=2an-2an-1⇒an=2an-1;
即an=2an-1(n≥2),且a1=1,
故{an}是以1为首项,以2为公比的等比数列
(2)由(1)得an=2n-1(n∈N*).
∴bn=2n-1•n
设Tn=1×20+2×21+3×22+…+n×2n-1①
2Tn=1×2+2×22+3×23+…+n×2n②
①-②:-Tn=1+2+22+23+…+2n-1-n×2n=
-n×2n=(1-n)×2n-1
∴Tn=(n-1)×2n+1.
当n≥2时,
|
即an=2an-1(n≥2),且a1=1,
故{an}是以1为首项,以2为公比的等比数列
(2)由(1)得an=2n-1(n∈N*).
∴bn=2n-1•n
设Tn=1×20+2×21+3×22+…+n×2n-1①
2Tn=1×2+2×22+3×23+…+n×2n②
①-②:-Tn=1+2+22+23+…+2n-1-n×2n=
| 1×(1-2n) |
| 1-2 |
∴Tn=(n-1)×2n+1.
点评:本题主要考察了等差数列与等比数列的综合应用,属于中档题.
练习册系列答案
相关题目
已知数列{an}的前S项和为Sn,且Sn=n-n2,则a4=( )
| A、-6 | B、-8 |
| C、-12 | D、-14 |