题目内容
计算:
(1)(2a
b
)(-6a
b
)÷(-3a
b
);
(2)(log43+log53)(log32+log92)
(1)(2a
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 6 |
(2)(log43+log53)(log32+log92)
考点:对数的运算性质,有理数指数幂的化简求值
专题:计算题
分析:(1)按照同底数的幂的乘除法运算法则解答;
(2)利用换底公式求之.
(2)利用换底公式求之.
解答:
解:(1)(2a
b
)(-6a
b
)÷(-3a
b
)=(-2×6÷3)a
+
-
b
+
-
=-4a
b0=-4a
;
(2)(log43+log53)(log32+log92)=log43log32+log43log92+log53log32+log53log92
=
×
+
×
+
×
+
×
=
+
+
log52.
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 6 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 5 |
| 6 |
| 2 |
| 3 |
| 2 |
| 3 |
(2)(log43+log53)(log32+log92)=log43log32+log43log92+log53log32+log53log92
=
| lg3 |
| 2lg2 |
| lg2 |
| lg3 |
| lg3 |
| 2lg2 |
| lg2 |
| 2lg3 |
| lg3 |
| lg5 |
| lg2 |
| lg3 |
| lg3 |
| lg5 |
| lg2 |
| 2lg3 |
=
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 2 |
点评:本题考查了同底数的幂的乘除法以及对数的换底公式的运用化简对数式.
练习册系列答案
相关题目
下列判断错误的是( )
| A、“am2<bm2”是“a<b”的充分不必要条件 |
| B、若f′(x0)=0,则x=x0是函数y=f(x)的极值点 |
| C、函数y=f(x)满足f(x+1)=f(1-x),则其图象关于直线x=1对称 |
| D、定义在R上的函数y=f(x)满足f(x+1)=-f(x),则周期为2 |