题目内容

若x>2,则x+
4
x-2
的最小值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:本题可以配成积为定值形式,然后用基本不等式得到本题结论.
解答: 解:∵x>2,
∴x-2>0.
∴x+
4
x-2
=(x-2)+
4
x-2
+2
2
(x-2)×
4
x-2
+2
=6.
当且仅当x-2=
4
x-2
,即x=4时,取最小值.
故答案为6.
点评:本题考查的是基本不等式,注意不等式使用的条件,本题难度不大,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网