题目内容
15.已知x,y∈(0,+∞),且满足$\frac{1}{x}+\frac{1}{2y}=2$,那么x+4y的最小值为( )| A. | $\frac{3}{2}-\sqrt{2}$ | B. | $3+\frac{{\sqrt{2}}}{2}$ | C. | $\frac{3}{2}+\sqrt{2}$ | D. | $3-\frac{{\sqrt{2}}}{2}$ |
分析 利用“乘1法”与基本不等式的性质即可得出.
解答 解:∵x,y∈(0,+∞),且满足$\frac{1}{x}+\frac{1}{2y}=2$,
那么x+4y=$\frac{1}{2}$$(\frac{1}{x}+\frac{1}{2y})$(x+4y)=$\frac{1}{2}$$(3+\frac{x}{2y}+\frac{4y}{x})$≥$\frac{1}{2}(3+2\sqrt{\frac{x}{2y}•\frac{4y}{x}})$=$\frac{3+2\sqrt{2}}{2}$=$\frac{3}{2}$+$\sqrt{2}$,
当且仅当x=2$\sqrt{2}y$=$\frac{1+\sqrt{2}}{2}$时取等号.
故选:C.
点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
8.奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则不等式f(x)>0的解集是( )
| A. | (-∞,-2)∪(0,2) | B. | (-∞,0)∪(2,+∞) | C. | (-2,0)∪(0,2) | D. | (-2,0)∪(2,+∞) |
11.设命题$p:?x∈R,{x^2}-x+\frac{1}{4}≥0$,则¬p为( )
| A. | $?x∈R,x_{\;}^2-x+\frac{1}{4}≥0$ | B. | $?x∈R,x_{\;}^2-x+\frac{1}{4}<0$ | ||
| C. | $?x∈R,x_{\;}^2-x+\frac{1}{4}≤0$ | D. | $?x∈R,{x^2}-x+\frac{1}{4}<0$ |