题目内容

8.已知函数f(x)是定义在R上的奇函数,满足f($\frac{3}{2}$-x)=f(x),f(-2)=-3,若数列{an}的前n项和Sn满足$\frac{S_n}{n}=\frac{{2{a_n}}}{n}+1$,则f(a5)+f(a6)=3.

分析 利用奇函数得性质推导出函数的周期为3,再求出an的解析式,并求出a5和a6,根据周期求得f(a5)+f(a6)的值.

解答 解:∵函数f(x)是奇函数,所以f(-x)=-f(x),$f(\frac{3}{2}-x)=f(x)=-f(-x)$),
记-x=t,则$f(\frac{3}{2}+t)=-f(t)$,即$f(\frac{3}{2}+x)=-f(x)$,所以$f(x+\frac{3}{2}+\frac{3}{2})=-f(x+\frac{3}{2})$
=-[-f(x)]=f(x),所以f(x)是以3为周期的周期函数.由$\frac{S_n}{n}=\frac{{2{a_n}}}{n}+1$得Sn=2an+n,①
所以Sn-1=2an-1+n-1(n≥2,n∈N),②
①-②得an=2an-1-1(n≥2),即an-1=2(an-1-1)(n≥2),
又∵$\frac{s_1}{1}=\frac{{2{a_1}}}{1}+1={a_1}$,
∴a1=-1,∴数列{an-1}是首项为a1-1=-2,公比为2的等比数列,
∴${a_n}-1=-2•{2^{n-1}}=-{2^n}$,
∴${a_n}=-{2^n}+1$,${a_5}=-{2^5}+1=-31$,${a_6}=-{2^6}+1=-63$,
∴f(a5)+f(a6)=f(-31)+f(-63)=f(2)+f(0)=-f(-2)=3.

点评 本题主要考察求数列通项和函数的周期性相结合的问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网