题目内容
8.已知函数f(x)是定义在R上的奇函数,满足f($\frac{3}{2}$-x)=f(x),f(-2)=-3,若数列{an}的前n项和Sn满足$\frac{S_n}{n}=\frac{{2{a_n}}}{n}+1$,则f(a5)+f(a6)=3.分析 利用奇函数得性质推导出函数的周期为3,再求出an的解析式,并求出a5和a6,根据周期求得f(a5)+f(a6)的值.
解答 解:∵函数f(x)是奇函数,所以f(-x)=-f(x),$f(\frac{3}{2}-x)=f(x)=-f(-x)$),
记-x=t,则$f(\frac{3}{2}+t)=-f(t)$,即$f(\frac{3}{2}+x)=-f(x)$,所以$f(x+\frac{3}{2}+\frac{3}{2})=-f(x+\frac{3}{2})$
=-[-f(x)]=f(x),所以f(x)是以3为周期的周期函数.由$\frac{S_n}{n}=\frac{{2{a_n}}}{n}+1$得Sn=2an+n,①
所以Sn-1=2an-1+n-1(n≥2,n∈N),②
①-②得an=2an-1-1(n≥2),即an-1=2(an-1-1)(n≥2),
又∵$\frac{s_1}{1}=\frac{{2{a_1}}}{1}+1={a_1}$,
∴a1=-1,∴数列{an-1}是首项为a1-1=-2,公比为2的等比数列,
∴${a_n}-1=-2•{2^{n-1}}=-{2^n}$,
∴${a_n}=-{2^n}+1$,${a_5}=-{2^5}+1=-31$,${a_6}=-{2^6}+1=-63$,
∴f(a5)+f(a6)=f(-31)+f(-63)=f(2)+f(0)=-f(-2)=3.
点评 本题主要考察求数列通项和函数的周期性相结合的问题,属于中档题.
练习册系列答案
相关题目
18.设点P是曲线C:y=x3-$\sqrt{3}$x+$\frac{2}{3}$上的任意一点,曲线C在P点处的切线的倾斜角为α,则角α的取值范围是( )
| A. | [$\frac{2}{3}$π,π) | B. | ($\frac{π}{2}$,$\frac{5}{6}$π] | C. | [0,$\frac{π}{2}$)∪[$\frac{5}{6}$π,π) | D. | [0,$\frac{π}{2}$)∪[$\frac{2}{3}$π,π) |
19.已知函数$f(x)=x+\frac{a}{x}+b(x≠0)$,其中a,b∈R.若对于任意的$a∈[{\frac{1}{2},2}]$,不等式f(x)≤10在$x∈[{\frac{1}{4},\sqrt{3}}]$上恒成立,则b的取值范围是( )
| A. | $({-∞,\frac{7}{4}}]$ | B. | $({-∞,10-\frac{5}{3}\sqrt{3}}]$ | C. | $({-∞,\frac{31}{4}}]$ | D. | $({-∞,10-\frac{7}{6}\sqrt{3}}]$ |
16.若x,y满足$\left\{\begin{array}{l}x≥0\\ x+2y-3≥0\\ 2x+y-3≤0\end{array}\right.$,则u=2x+y的最大值为( )
| A. | 3 | B. | $\frac{5}{2}$ | C. | 2 | D. | $\frac{3}{2}$ |
3.若执行如图的程序框图,输出S的值为6,则判断框中应填入的条件是( )

| A. | k<32? | B. | k<65? | C. | k<64? | D. | k<31? |
20.二项式(x-$\frac{1}{x}$)n(n∈N*)的展开式中存在常数项的一个充分条件是( )
| A. | n=5 | B. | n=6 | C. | n=7 | D. | n=9 |