题目内容
7.已知集合A={-1,0,1},B={x|y=x2,x∈R},则A∩B=( )| A. | {0,1} | B. | {-1,0,1} | C. | {1} | D. | ∅ |
分析 求出B中x的范围确定出B,找出A与B的交集即可.
解答 解:∵A={-1,0,1},B={x|y=x2,x∈R}=R,
∴A∩B=A={-1,0,1},
故选:A.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
17.圆x2+y2-4x=0的圆心到双曲线$\frac{{x}^{2}}{3}$-y2=1的渐近线的距离为( )
| A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
2.命题p:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点,则下列表述正确的是( )
| A. | p是假命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点 | |
| B. | p是真命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 | |
| C. | p是假命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 | |
| D. | p是真命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 |