题目内容
12.已知sinA+sinB+sinC=0,cosA+cosB+cosC=0,求证:sin2A+sin2B+sin2C=0,cos2A+cos2B+cos2C=0.分析 将sinA=-(sinB+sinC),cosA=-(cosB+cosC),代入同角三角函数的基本关系,sin2A+cos2A=1,化简整理得cos(B-C)=-$\frac{1}{2}$,根据二倍角公式,sin2A+sin2B+sin2C═2sin(B+C)[2cos(B-C)+1],即可证明;利用二倍角将同理,cos2A+cos2B+cos2C=2cos2A-1+cos2B+cos2C,进一步化简得cos2A+cos2B+cos2C=-2cos(B+C)+2cos(B+C)-1+1,整理即可证明.
解答 证明:由sinA=-(sinB+sinC),cosA=-(cosB+cosC),
sin2A+cos2A=1,
∴(sinB+sinC)2+(cosB+cosC)2=1,
sin2B+2sinBsinC+sin2C+cos2B+2cosBcosC+cos2C=1,
2+2cos(B-C)=1
即cos(B-C)=-$\frac{1}{2}$,
sin2A+sin2B+sin2C=2(sinB+cosC)(cosB+cosC)+sin2B+sin2C,
=2[sin2B+sin2C+sin(B+C)],
=2sin(B+C)[2cos(B-C)+1]
=0;
cos2A+cos2B+cos2C=2cos2A-1+cos2B+cos2C,
=2cos2B+2cos2C-1+4cosBcosC+cos2B+cos2C,
=2cos2B+2cos2C+4cosBcosC+1,
=4cos(B+C)cos(B-C)+2[cos(B+C)+cos(B-C)]+1,
=-2cos(B+C)+2cos(B+C)-1+1,
=0.
点评 本题考查同角的基本关系,两角和差的正余弦公式及二倍角公式,证明过程复杂,需要敏锐的观察能力,属于中档题.
| A. | [$\frac{14}{5}$,7] | B. | [4,7] | C. | [$\frac{14}{5}$,4] | D. | [7,+∞) |
| A. | {0,1} | B. | {-1,0,1} | C. | {1} | D. | ∅ |
| A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |