题目内容
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=
(an-an+1+an+2)x+an+1·cosx-an+2·sin x满足f′
=0.
(1)求数列{an}的通项公式;
(2)若bn=2
,求数列{bn}的前n项和Sn.
解析:(1)由a1=2,a2+a4=8
f(x)=(an-an+1+an+2)x+an+1·cos x-an+2·sin x,
f′(x)=an-an+1+an+2-an+1·sin x-an+2·cos x,
所以f′
=an-an+1+an+2-an+1=0,
所以,2an+1=an+an+2,
所以{an}是等差数列.
而a1=2,a3=4,d=1,
an=2+
(n-1)×1=n+1(n∈N*).
(2)bn=2
=2(n+1)+
,
Sn=![]()
=n(n+3)+1-
=n2+3n+1-
.
练习册系列答案
相关题目