题目内容
已知g(a)=
,满足g(a)=g(
)的所有实数a为 .
|
| 1 |
| a |
考点:函数的值
专题:计算题,函数的性质及应用
分析:由a,及
的取值范围,分6种情况讨论即可.
| 1 |
| a |
解答:
解:①当a>0时,g(a)=g(
)可化为
a+2=
+2;
故a=1;
②当-
<a<0时,g(a)=g(
)可化为
a+2=
;
即a=
-2(舍去);
③当-
<a≤-
时,g(a)=g(
)可化为
=
;
解得,a=-
(舍去);
④当-
≤a≤-
时,
g(a)=g(
)可化为
=
;恒成立;
⑤当-2≤a<-
时,g(a)=g(
)可化为
=
;
解得,a=-1-2
(舍去);
⑥当a<-2时,g(a)=g(
)可化为
+2=
;
故a=
(舍去);
综上所述,满足g(a)=g(
)的所有实数a为
{1}∪[-
,-
].
故答案为:{1}∪[-
,-
].
| 1 |
| a |
a+2=
| 1 |
| a |
故a=1;
②当-
| 1 |
| 2 |
| 1 |
| a |
a+2=
| 2 |
即a=
| 2 |
③当-
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| a |
| -a-1 |
| 2a |
| 2 |
解得,a=-
| 1 | ||
2
|
④当-
| 2 |
| ||
| 2 |
g(a)=g(
| 1 |
| a |
| 2 |
| 2 |
⑤当-2≤a<-
| 2 |
| 1 |
| a |
-
| ||
2×
|
| 2 |
解得,a=-1-2
| 2 |
⑥当a<-2时,g(a)=g(
| 1 |
| a |
| 1 |
| a |
| 2 |
故a=
| 1 | ||
|
综上所述,满足g(a)=g(
| 1 |
| a |
{1}∪[-
| 2 |
| ||
| 2 |
故答案为:{1}∪[-
| 2 |
| ||
| 2 |
点评:本题考查了分类讨论的思想运用,属于基础题.
练习册系列答案
相关题目