题目内容
在等比数列{an}中,已知对任意的正整数n,有sn=2n-1,则a12+a22+…+an2=( )
| A、(2n-1)2 | ||
B、
| ||
| C、2n-1 | ||
D、
|
考点:数列的求和
专题:计算题,等差数列与等比数列
分析:由等比数列的前n项和可求前几项,求出首项和公比即可求出数列的通项公式,由等比数列的性质可知an2也为等比数列,根据等比数列的前n项和的公式
解答:
解:∵等比数列{an}的前n项和Sn=2n-1
∴a1=S1=1,a2=S2-S1=2,q=2
所以等比数列的首项为1,公比q为2,
则an=2n-1
∴an2=4n-1,是首项为1,公比为4的等比数列,
∴a12+a22+…an2=
=
(4n-1)
故选:D.
∴a1=S1=1,a2=S2-S1=2,q=2
所以等比数列的首项为1,公比q为2,
则an=2n-1
∴an2=4n-1,是首项为1,公比为4的等比数列,
∴a12+a22+…an2=
| 1-4n |
| 1-4 |
| 1 |
| 3 |
故选:D.
点评:本题主要考查数列的求和问题,以及由前n项和求数列通项和等比数列的前n项和公式,属于中档题.
练习册系列答案
相关题目
下列函数中,满足“?x1,x2∈(0,+∞)且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是( )
| A、f(x)=2x | ||
| B、f(x)=-(x-1)2 | ||
C、f(x)=
| ||
| D、f(x)=ln(x+1) |
已知集合M={x|x>1},N={x|x2≤4},则M∩N=( )
| A、(1,2) |
| B、[1,2] |
| C、(1,2] |
| D、[-2,+∞) |
直线l与函数f(x)=-sinx(x∈[-π,0])的图象相切于点A,且l∥OP,其中O为坐标原点,P(xp,yp)在f(x)图象上,且f′(xp)=0,则点A的纵坐标是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
设m,n是两条不同的直线,α,β,γ是三个不同的平面.有下列四个命题:
①若m?β,α⊥β,则m⊥α
②若α∥β,m?α,则m∥β
③若n⊥α,n⊥β,m⊥α则m⊥β
④若α⊥γ,β⊥γ,则α⊥β
其中正确命题的序号是( )
①若m?β,α⊥β,则m⊥α
②若α∥β,m?α,则m∥β
③若n⊥α,n⊥β,m⊥α则m⊥β
④若α⊥γ,β⊥γ,则α⊥β
其中正确命题的序号是( )
| A、①③ | B、①② | C、③④ | D、②③ |
在(1-x)20的展开式中,如果第4r项和第r+2项的二项式系数相等,则r的值为( )
| A、4 | B、5 | C、6 | D、7 |
执行如图所示的程序框图,则输出的结果是( )

| A、14 | B、15 | C、16 | D、17 |