题目内容

曲线C:y=xex在点M(1,e)处的切线方程为
 
考点:利用导数研究曲线上某点切线方程
专题:导数的概念及应用
分析:求出函数的导数,利用导数的几何意义即可得到结论.
解答: 解:函数的f(x)的导数f′(x)=(1+x)ex
则曲线在(1,e)处的切线斜率k=f′(1)=2e,
则对应的切线方程为y-e=2e(x-1),
即y=2ex-e.
故答案为:y=2ex-e
点评:本题主要考查曲线切线的求解,根据导数的几何意义求出切线斜率是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网