题目内容
已知△ABC的顶点为A(0,0),B(4,8),C(6,-4).点M在线段AB上,且
=3
,点P在线段AC上,S△APM=
S△ABC,求点M,P的坐标.
| AM |
| MB |
| 1 |
| 2 |
考点:平行向量与共线向量
专题:计算题,平面向量及应用
分析:由
=3
,得
=
,即得点M坐标;设
=t
(0≤t≤1),由三角形面积公式及S△APM=
S△ABC可求得t值,从而可得点P的坐标.
| AM |
| MB |
| AM |
| 3 |
| 4 |
| AB |
| AP |
| AC |
| 1 |
| 2 |
解答:
解:∵
=3
,∴
=
=
(4,8)=(3,6),
∴点M的坐标为:(3,6);
设
=t
(0≤t≤1),
则S△APM=
|
||
|sinA=
×
|
||t
|sinA=
|
||t||
|sinA,S△ABC=
|
||
|sinA,
∵S△APM=
S△ABC,
∴
|
||t||
|sinA=
×
|
||
|sinA,即|t|=
,
又0≤t≤1,∴t=
,
∴
=
=
(6,-4)=(4,-
),
∴点P的坐标为(4,-
).
| AM |
| MB |
| AM |
| 3 |
| 4 |
| AB |
| 3 |
| 4 |
∴点M的坐标为:(3,6);
设
| AP |
| AC |
则S△APM=
| 1 |
| 2 |
| AM |
| AP |
| 1 |
| 2 |
| 3 |
| 4 |
| AB |
| AC |
| 3 |
| 8 |
| AB |
| AC |
| 1 |
| 2 |
| AB |
| AC |
∵S△APM=
| 1 |
| 2 |
∴
| 3 |
| 8 |
| AB |
| AC |
| 1 |
| 2 |
| 1 |
| 2 |
| AB |
| AC |
| 2 |
| 3 |
又0≤t≤1,∴t=
| 2 |
| 3 |
∴
| AP |
| 2 |
| 3 |
| AC |
| 2 |
| 3 |
| 8 |
| 3 |
∴点P的坐标为(4,-
| 8 |
| 3 |
点评:本题考查向量共线的坐标表示、三角形面积公式等知识,考查学生灵活运用所学知识解决问题的能力.
练习册系列答案
相关题目