题目内容

13.已知数列{an}的各项均为正数,且满足a1=1,$\frac{1}{{a}_{n}^{2}}$-$\frac{1}{{a}_{n-1}^{2}}$=1(n≥2,n∈N*),则a1024=(  )
A.$\frac{\sqrt{2}}{16}$B.$\frac{1}{16}$C.$\frac{\sqrt{2}}{32}$D.$\frac{1}{32}$

分析 利用等差数列的通项公式即可得出.

解答 解:∵数列{an}的各项均为正数,且满足a1=1,$\frac{1}{{a}_{n}^{2}}$-$\frac{1}{{a}_{n-1}^{2}}$=1(n≥2,n∈N*),
∴数列$\{\frac{1}{{a}_{n}^{2}}\}$是等差数列,公差为1,首项为1.
∴$\frac{1}{{a}_{n}^{2}}$=1+(n-1)=n,解得an=$\frac{1}{\sqrt{n}}$.
则a1024=$\frac{1}{\sqrt{1024}}$=$\frac{1}{32}$.
故选:D.

点评 本题考查了等差数列通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网