题目内容

已知正项等比数列{an}满足a3•a2n-3=4n(n>1),则log2a1+log2a3+log2a5+…+log2a2n-1=(  )
A、n2
B、(n+1)2
C、n(2n-1)
D、(n-1)2
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:根据所给的等式a3•a2n-3=4n,可以看出数列中的下标之和为2n时的两项之积是4n,所以对要求的结论先用对数的性质进行整理,把下标和是2n的两项放在一起,再计算对数的结果.
解答: 解:∵a3•a2n-3=4n
∴log2a1+log2a3+…+log2a2n-1
=log2(a1a2…a2n-1

=log2(a1a2n-1a3a2n-3…)
=log2(4n)
n
2
=n2
故选A.
点评:本题考查数列求和,对数的运算性质,使学生系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网