题目内容
已知椭圆的焦点是F1(0,-1)、F2(0,1),P是椭圆上一点,并且|F1F2|是|PF1|与|PF2|的等差中项,则椭圆的方程是 .
考点:椭圆的简单性质,椭圆的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据|F1F2|是|PF1|与|PF2|的等差中项,可得2|F1F2|=|PF1|+|PF2|,且|F1F2|=2c,|PF1|+|PF2|=2a,就可求出a,b的值,再判断焦点所在坐标轴,就可得到椭圆方程.
解答:
解:∵|F1F2|是|PF1|与|PF2|的等差中项,
∴2|F1F2|=|PF1|+|PF2|,
∴2|F1F2|=|PF1|+|PF2|
又∵|F1F2|=2c,|PF1|+|PF2|=2a,∴4c=2a,a=2c
∵椭圆的两焦点为F1(0,-1),F2(0,1),∴c=1,
∴a=2,b2=a2-c2=3,
又∵椭圆的焦点在y轴上,
∴椭圆方程为
+
=1.
故答案为:
+
=1.
∴2|F1F2|=|PF1|+|PF2|,
∴2|F1F2|=|PF1|+|PF2|
又∵|F1F2|=2c,|PF1|+|PF2|=2a,∴4c=2a,a=2c
∵椭圆的两焦点为F1(0,-1),F2(0,1),∴c=1,
∴a=2,b2=a2-c2=3,
又∵椭圆的焦点在y轴上,
∴椭圆方程为
| x2 |
| 3 |
| y2 |
| 4 |
故答案为:
| x2 |
| 3 |
| y2 |
| 4 |
点评:本题主要考查了应用椭圆的定义以及等差中项的概念求椭圆方程,关键是求a,b的值.
练习册系列答案
相关题目