题目内容
5.| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 3 | D. | 4 |
分析 由几何体的三视图还原几何体,该几何体是同底面的上下两个正四棱锥的组合体,根据各边是边长为1的等边三角形求表面积.
解答
解:如图所示,该几何体是同底面的上下两个正四棱锥.
则该几何体的表面积S=8×$\frac{1}{2}×\frac{\sqrt{3}}{2}$=2$\sqrt{3}$;
故选B.
点评 本题考查了正八面体的三视图及其表面积计算公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
7.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
(1)求y关于x的线性回归方程;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}=62.7$,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=55.
| x | 1 | 2 | 3 | 4 | 5 |
| y | 7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}=62.7$,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=55.
14.将7名留学归国人员分配到甲、乙两地工作,若甲地至少安排3人,乙地至少安排3人,则不同的安排方法数为( )
| A. | 120 | B. | 150 | C. | 70 | D. | 35 |
15.社会公众人物的言行一定程度上影响着年轻人的人生观、价值观.某媒体机构为了解大学生对影视、歌星以及著名主持人方面的新闻(简称:“星闻”)的关注情况,随机调查了某大学的200位大学生,得到信息如表:
(Ⅰ)从所抽取的200人内关注“星闻”的大学生中,再抽取三人做进一步调查,求这三人性别不全相同的概率;
(Ⅱ)是否有95%以上的把握认为“关注‘星闻’与性别有关”,并说明理由;
(Ⅲ)把以上的频率视为概率,若从该大学随机抽取4位男大学生,设这4人中关注“星闻”的人数为ξ,求ξ的分布列及数学期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},n=a+b+c+d$.
| 男大学生 | 女大学生 | |
| 不关注“星闻” | 80 | 40 |
| 关注“星闻” | 40 | 40 |
(Ⅱ)是否有95%以上的把握认为“关注‘星闻’与性别有关”,并说明理由;
(Ⅲ)把以上的频率视为概率,若从该大学随机抽取4位男大学生,设这4人中关注“星闻”的人数为ξ,求ξ的分布列及数学期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},n=a+b+c+d$.
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |