题目内容
12.若tanθ=-2,求:(1)$\frac{3sinθ-2cosθ}{2sinθ+cosθ}$;
(2)$\frac{1}{{2sinαcosα+{{cos}^2}α}}$.
分析 由条件利用同角三角函数的基本关系,求得要求式子的值.
解答 解:(1)∵tanθ=-2,∴$\frac{3sinθ-2cosθ}{2sinθ+cosθ}$=$\frac{3tanθ-2}{2tanθ+1}$=$\frac{-9}{-3}$=3.
(2)$\frac{1}{{2sinαcosα+{{cos}^2}α}}$=$\frac{{sin}^{2}α{+cos}^{2}α}{2sinαcosα{+cos}^{2}α}$=$\frac{{tan}^{2}α+1}{2tanα+1}$=$\frac{5}{-3}$=-$\frac{5}{3}$.
点评 题主要考查同角三角函数的基本关系的应用,属于基础题.
练习册系列答案
相关题目
3.近年来,微信越来越受欢迎,许多人通过微信表达自己、交流思想和传递信息,微信是现代生活中进行信息交流的重要工具.而微信支付为用户带来了全新的支付体验,支付环节由此变得简便而快捷.某商场随机对商场购物的100名顾客进行统计,其中40岁以下占$\frac{3}{5}$,采用微信支付的占$\frac{2}{3}$,40岁以上采用微信支付的占$\frac{1}{4}$.
(Ⅰ)请完成下面2×2列联表:
并由列联表中所得数据判断有多大的把握认为“使用微信支付与年龄有关”?
(Ⅱ)若以频率代替概率,采用随机抽样的方法从“40岁以下”的人中抽取2人,从“40岁以上”的人中抽取1人,了解使用微信支付的情况,问至少有一人使用微信支付的概率为多少?
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
参考数据:
(Ⅰ)请完成下面2×2列联表:
| 40岁以下 | 40岁以上 | 合计 | |
| 使用微信支付 | |||
| 未使用微信支付 | |||
| 合计 |
(Ⅱ)若以频率代替概率,采用随机抽样的方法从“40岁以下”的人中抽取2人,从“40岁以上”的人中抽取1人,了解使用微信支付的情况,问至少有一人使用微信支付的概率为多少?
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
参考数据:
| P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
| k0 | 2.760 | 3.841 | 6.635 | 10.828 |
20.函数y=lg(2x2-x-1)的定义域为( )
| A. | (-$\frac{1}{2}$,1) | B. | (1,+∞) | C. | (-∞,1)∪(2,+∞) | D. | (-∞,-$\frac{1}{2}$)∪(1,+∞) |
17.已知点P(1,$-\sqrt{3}$),则它的极坐标是( )
| A. | $(2,\frac{π}{3})$ | B. | $(2,\frac{4π}{3})$ | C. | $(2,\frac{5π}{3})$ | D. | $(2,\frac{2π}{3})$ |
1.设复数$z=\frac{-1-2i}{i}$,则复数z-1的摸为( )
| A. | $\sqrt{10}$ | B. | 4 | C. | $2\sqrt{3}$ | D. | 2 |