题目内容

12.若tanθ=-2,求:
(1)$\frac{3sinθ-2cosθ}{2sinθ+cosθ}$;
(2)$\frac{1}{{2sinαcosα+{{cos}^2}α}}$.

分析 由条件利用同角三角函数的基本关系,求得要求式子的值.

解答 解:(1)∵tanθ=-2,∴$\frac{3sinθ-2cosθ}{2sinθ+cosθ}$=$\frac{3tanθ-2}{2tanθ+1}$=$\frac{-9}{-3}$=3.
(2)$\frac{1}{{2sinαcosα+{{cos}^2}α}}$=$\frac{{sin}^{2}α{+cos}^{2}α}{2sinαcosα{+cos}^{2}α}$=$\frac{{tan}^{2}α+1}{2tanα+1}$=$\frac{5}{-3}$=-$\frac{5}{3}$.

点评 题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网