题目内容

14.已知椭圆${C_1}:\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1({{a_1}>{b_1}>0})$与双曲线${C_2}:\frac{x^2}{a_2^2}-\frac{y^2}{b_2^2}=1({{a_2}>0,{b_2}>0})$有相同的焦点F1,F2,点P是两曲线的一个公共点,且PF1⊥PF2,e1,e2分别是两曲线C1,C2的离心率,则$9e_1^2+e_2^2$的最小值是(  )
A.4B.6C.8D.16

分析 由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出a12+a22=2c2,由此能求出9e12+e22的最小值.

解答 解:由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2
令P在双曲线的右支上,
由双曲线的定义|PF1|-|PF2|=2a2,①
由椭圆定义|PF1|+|PF2|=2a1,②
又∵PF1⊥PF2
∴|PF1|2+|PF2|2=4c2,③
2+②2,得|PF1|2+|PF2|2=2a12+2a22,④
将④代入③,得a12+a22=2c2
∴9e12+e22=$\frac{9{c}^{2}}{{{a}_{1}}^{2}}$+$\frac{{c}^{2}}{{{a}_{2}}^{2}}$=5+$\frac{9{{a}_{2}}^{2}}{{{2a}_{1}}^{2}}$+$\frac{{{a}_{1}}^{2}}{2{{a}_{2}}^{2}}$≥8,即$9e_1^2+e_2^2$的最小值是8.
故选:C.

点评 本题考查9e12+e22的最小值的求法,是中档题,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网