题目内容

6.若$\frac{1+2i}{a+bi}=1+i$,其中a、b为实数,则a+b的值等于(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{3}{2}$

分析 利用复数代数形式的乘除运算化简,再由复数相等的条件列式求得a,b的值,则答案可求.

解答 解:∵$\frac{1+2i}{a+bi}=\frac{(1+2i)(a-bi)}{(a+bi)(a-bi)}$=$\frac{(a+2b)+(2a-b)i}{{a}^{2}+{b}^{2}}=1+i$,
∴$\left\{\begin{array}{l}{\frac{a+2b}{{a}^{2}+{b}^{2}}=1}\\{\frac{2a-b}{{a}^{2}+{b}^{2}}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{3}{2}}\\{b=\frac{1}{2}}\end{array}\right.$.
∴a+b=$\frac{3}{2}+\frac{1}{2}=2$.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网