题目内容

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
1
2
AD=1,CD=
3
.        
(Ⅰ) 求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.
考点:二面角的平面角及求法,平面与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)法一:由AD∥BC,BC=
1
2
AD,Q为AD的中点,知四边形BCDQ为平行四边形,故CD∥BQ.由∠ADC=90°,知QB⊥AD.由平面PAD⊥平面ABCD,知BQ⊥平面PAD.由此能够证明平面PQB⊥平面PAD.
法二:由AD∥BC,BC=
1
2
AD,Q为AD的中点,知四边形BCDQ为平行四边形,故CD∥BQ.由∠ADC=90°,知∠AQB=90°.由PA=PD,知PQ⊥AD,故AD⊥平面PBQ.由此证明平面PQB⊥平面PAD.
(Ⅱ)由PA=PD,Q为AD的中点,知PQ⊥AD.由平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,知PQ⊥平面ABCD.以Q为原点建立空间直角坐标系,利用向量法能够求出t=3.
解答: (Ⅰ)证法一:∵AD∥BC,BC=
1
2
AD,Q为AD的中点,
∴四边形BCDQ为平行四边形,∴CD∥BQ.
∵∠ADC=90°∴∠AQB=90°,即QB⊥AD.
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD.
∵BQ?平面PQB,∴平面PQB⊥平面PAD. …(9分)
证法二:AD∥BC,BC=
1
2
AD,Q为AD的中点,
∴四边形BCDQ为平行四边形,∴CD∥BQ.
∵∠ADC=90°∴∠AQB=90°.
∵PA=PD,∴PQ⊥AD.
∵PQ∩BQ=Q,∴AD⊥平面PBQ.
∵AD?平面PAD,∴平面PQB⊥平面PAD.…(9分)

解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如图,以Q为原点建立空间直角坐标系.
则平面BQC的法向量为
n
=(0,0,1);
Q(0,0,0),P(0,0,
3
),B(0,
3
,0),C(-1,
3
,0).
设M(x,y,z),则
PM
=(x,y,z-
3
),
MC
=(-1-x,
3
-y,-z),
PM
=t
MC

x=t(-1-x)
y=t(
3
-y)
z-
3
=t(-z)

x=-
t
1+t
y=
3
t
1+t
z=
3
1+t
…(12分)
在平面MBQ中,
QB
=(0,
3
,0),
QM
=(-
t
1+t
3
t
1+t
3
1+t
),
∴平面MBQ法向量为
m
=(
3
,0,t).…(13分)
∵二面角M-BQ-C为30°,
∴cos30°=
|
n
m
|
|
n
|•|
m
|
=
t
3+0+t2
=
3
2

∴t=3.…(15分)
点评:本题考查平面与平面垂直的证明,求实数的取值.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意合理地进行等价转化,合理地运用向量法进行解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网