题目内容
1.已知四棱锥P-ABCD的三视图和直观图如图:(1)求四棱锥P-ABCD的体积;
(2)若E是侧棱PC上的动点,是否不论点E在何位置,都有BD⊥AE?证明你的结论.
分析 (1)由三视图可知,四棱锥中,PC⊥底面ABCD底面ABCD是边长为1的正方形,PC=2,由此能求出四棱锥P-ABCD的体积.
(2)连接AC,推导出BD⊥平面PAC,由此能求出当E在PC上运动时,BD⊥AE恒成立.
解答 解:(1)由三视图可知,四棱锥中,PC⊥底面ABCD,![]()
底面ABCD是边长为1的正方形,PC=2,
∴四棱锥P-ABCD的体积VP-ABCD=$\frac{1}{3}$•PC•S底=$\frac{1}{3}$×2×1=$\frac{2}{3}$.
(2)不论点E在何位置,都有BD⊥AE成立.
证明如下:连接AC,∵BD⊥AC,BD⊥PC,且AC∩PC=C,
∴BD⊥平面PAC,
当E在PC上运动时,AE?面PAC,
∴BD⊥AE恒成立.
点评 本题考查几何体的体积的求法,考查线线垂直的判断与证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.
练习册系列答案
相关题目
11.方程y=-$\sqrt{25-{x}^{2}}$表示的曲线( )
| A. | 一条射线 | B. | 一个圆 | C. | 两条射线 | D. | 半个圆 |
9.
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图,将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.
(1)根据已知条件完成下面的2×2列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?
| 非体育迷 | 体育迷 | 合计 | |
| 男 | |||
| 女 | |||
| 合计 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
16.已知$\frac{cos2α}{cos(α+\frac{π}{4})}$=$\frac{1}{2}$,则sin2α的值为( )
| A. | $\frac{7}{8}$ | B. | -$\frac{7}{8}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |